共 13 条
Structure of BiHom-pre-Poisson algebras
被引:0
作者:
Aloulou, Walid
[1
]
Jebli, Mansour
[2
]
机构:
[1] Univ Sousse, Dept Math, Inst Preparatoire Etud Ingenieurs Sfax, Lab Math Phys Fonct Speciales & Applicat, Route Menzel Chaker Km 0 5, Sfax 3018, Tunisia
[2] Univ Sfax, Univ Sousse, Fac Sci Sfax, Dept Math,Lab Math Phys Fonct Speciales & Applicat, BP 1171, Sfax 3038, Tunisia
来源:
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
|
2024年
/
28卷
/
02期
关键词:
Pre-Lie algebras;
pre-Poisson algebras;
Poisson algebras;
dual pre-Poisson algebras;
Rota-Baxter operator;
Zinbiel algebras;
LIE-ALGEBRAS;
D O I:
10.12697/ACUTM.2024.28.11
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In the current research paper, we define and investigate the structure of a BiHom-pre-Poisson algebra. This algebraic structure is defined by two products "boolean AND", "o" and two linear maps f , g on A . In particular, (A, boolean AND, f, g) is a BiHom-Zinbiel algebra and (A, o, f, g) is a BiHom-pre-Lie algebra. Additionally two compatibility conditions between boolean AND and o are verified. Our first main results are devoted to demonstrating that if A is a BiHom-pre-Lie algebra, then a tensorial algebra of A has a structure of a BiHom-pre-Poisson algebra. Furthermore, we prove that any BiHom-Poisson algebra together with a Rota-Baxter operator defines a BiHom-pre-Poisson algebra. Finally, we define the structure of a dual BiHom-pre-Poisson algebra and we demonstrate that an averaging operator on a BiHom-Poisson algebra gives rise to a dual BiHom-pre-Poisson algebra.
引用
收藏
页码:149 / 173
页数:25
相关论文