Structure of BiHom-pre-Poisson algebras

被引:0
作者
Aloulou, Walid [1 ]
Jebli, Mansour [2 ]
机构
[1] Univ Sousse, Dept Math, Inst Preparatoire Etud Ingenieurs Sfax, Lab Math Phys Fonct Speciales & Applicat, Route Menzel Chaker Km 0 5, Sfax 3018, Tunisia
[2] Univ Sfax, Univ Sousse, Fac Sci Sfax, Dept Math,Lab Math Phys Fonct Speciales & Applicat, BP 1171, Sfax 3038, Tunisia
来源
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA | 2024年 / 28卷 / 02期
关键词
Pre-Lie algebras; pre-Poisson algebras; Poisson algebras; dual pre-Poisson algebras; Rota-Baxter operator; Zinbiel algebras; LIE-ALGEBRAS;
D O I
10.12697/ACUTM.2024.28.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current research paper, we define and investigate the structure of a BiHom-pre-Poisson algebra. This algebraic structure is defined by two products "boolean AND", "o" and two linear maps f , g on A . In particular, (A, boolean AND, f, g) is a BiHom-Zinbiel algebra and (A, o, f, g) is a BiHom-pre-Lie algebra. Additionally two compatibility conditions between boolean AND and o are verified. Our first main results are devoted to demonstrating that if A is a BiHom-pre-Lie algebra, then a tensorial algebra of A has a structure of a BiHom-pre-Poisson algebra. Furthermore, we prove that any BiHom-Poisson algebra together with a Rota-Baxter operator defines a BiHom-pre-Poisson algebra. Finally, we define the structure of a dual BiHom-pre-Poisson algebra and we demonstrate that an averaging operator on a BiHom-Poisson algebra gives rise to a dual BiHom-pre-Poisson algebra.
引用
收藏
页码:149 / 173
页数:25
相关论文
共 13 条
  • [1] Pre-Poisson algebras
    Aguiar, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) : 263 - 277
  • [2] Cayley A., 1881, AM J MATH, V4, P266, DOI DOI 10.2307/2369158
  • [3] Chapoton F, 2001, INT MATH RES NOTICES, V2001, P395
  • [4] Chari V., 1995, A Guide to Quantum Groups
  • [5] Drinfeld V.G., 1988, J SOV MATH, V41, P898, DOI [10.1007/BF01247086, DOI 10.1007/BF01247086]
  • [6] BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras
    Graziani, Giacomo
    Makhlouf, Abdenacer
    Menini, Claudia
    Panaite, Florin
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [7] Deformations of Lie algebras using σ-derivations
    Hartwig, JT
    Larsson, D
    Silvestrov, SD
    [J]. JOURNAL OF ALGEBRA, 2006, 295 (02) : 314 - 361
  • [8] Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities
    Larsson, D
    Silvestrov, SD
    [J]. JOURNAL OF ALGEBRA, 2005, 288 (02) : 321 - 344
  • [9] Hom-Lie algebroids
    Laurent-Gengoux, Camille
    Teles, Joana
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 68 : 69 - 75
  • [10] Li X., 2019, Internat. J. Algebra, V13, P73