Nonhomogeneous hidden semi-Markov models for toroidal data

被引:1
|
作者
Lagona, Francesco [1 ]
Mingione, Marco [1 ]
机构
[1] Univ Roma Tre, Dept Polit Sci, Via G Chiabrera, I-00145 Rome, Italy
关键词
circular data; dwell times; hidden semi-Markov model; model-based segmentation; wave; wind; WIND;
D O I
10.1093/jrsssc/qlae049
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A nonhomogeneous hidden semi-Markov model is proposed to segment bivariate time series of wind and wave directions according to a finite number of latent regimes and, simultaneously, estimate the influence of time-varying covariates on the process' survival under each regime. The model is a mixture of toroidal densities, whose parameters depend on the evolution of a semi-Markov chain, which is in turn modulated by time-varying covariates. It includes nonhomogeneous hidden Markov models and hidden semi-Markov models as special cases. Parameter estimates are obtained using an Expectation-Maximization algorithm that relies on an efficient augmentation of the latent process. Fitted on a time series of wind and wave directions recorded in the Adriatic Sea, the model offers a clear-cut description of sea state dynamics in terms of latent regimes and captures the influence of time-varying weather conditions on the duration of such regimes.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] A Spectral Algorithm for Inference in Hidden semi-Markov Models
    Melnyk, Igor
    Banerjee, Arindam
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [12] The discovery of processing stages: Analyzing EEG data with hidden semi-Markov models
    Borst, Jelmer P.
    Anderson, John R.
    NEUROIMAGE, 2015, 108 : 60 - 73
  • [13] Maximum likelihood estimation for hidden semi-Markov models
    Barbu, V
    Limnios, N
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 201 - 205
  • [14] Multivariate hidden semi-Markov models for longitudinal data: a dynamic regression modeling
    Haji-Maghsoudi, Saiedeh
    Sadeghifar, Majid
    Roshanaei, Ghodratollah
    Mahjub, Hossein
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 5830 - 5849
  • [15] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Morteza Amini
    Afarin Bayat
    Reza Salehian
    Computational Statistics, 2023, 38 : 1283 - 1335
  • [16] Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
    Touloupou, Panayiota
    Finkenstadt, Barbel
    Spencer, Simon E. F.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 238 - 249
  • [17] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Amini, Morteza
    Bayat, Afarin
    Salehian, Reza
    COMPUTATIONAL STATISTICS, 2023, 38 (03) : 1283 - 1335
  • [18] Hidden Markov and Semi-Markov Models When and Why are These Models Useful for Classifying States in Time Series Data?
    Sofia Ruiz-Suarez
    Vianey Leos-Barajas
    Juan Manuel Morales
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 339 - 363
  • [19] Hidden Markov and Semi-Markov Models When and Why are These Models Useful for Classifying States in Time Series Data?
    Ruiz-Suarez, Sofia
    Leos-Barajas, Vianey
    Manuel Morales, Juan
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (02) : 339 - 363
  • [20] Hidden hybrid Markov/semi-Markov chains
    Guédon, Y
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (03) : 663 - 688