Invariant Feature Purification Method for Domain Generalization of Rolling Bearing Fault Diagnosis

被引:0
|
作者
Xie, Yining [1 ]
Yang, Guojun [2 ]
Chen, Hongzhan [2 ]
Zhao, Zhichao [3 ]
Leng, Xin [2 ]
机构
[1] Northeast Forestry Univ, Coll Mech & Elect Engn, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
[3] Harbin Dongan Engine Co, China Aviat Engine Corp, Harbin 150060, Peoples R China
关键词
Feature extraction; Fault diagnosis; Training; Purification; Vibrations; Data models; Data mining; Rolling bearings; Employee welfare; Adaptation models; Adversarial learning; domain generalization; fault diagnosis; feature purification; invariant feature; NETWORK;
D O I
10.1109/TIM.2024.3522623
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The operational data of rolling bearings under different working conditions vary greatly, leading to poor generalization ability of fault diagnosis models under unknown working conditions. The current domain generalization methods used in vibration fault diagnosis have not yet solved the problem of extracting invariant features. This article proposes an invariant feature purification method for domain generalization (IFPDG) in rolling bearing fault diagnosis to address this issue. This method iterates the model through two stages of game theory, ensuring that only invariant features exist in the feature space. During the global training phase, interference from domain-related features is eliminated through a phase attention mechanism and feature decoupling loss. During the adversarial training phase, interference from inefficient features is eliminated through feature masks. The experimental verification of this method is conducted on the CWRU dataset and the NEFU_FDDG dataset. Especially in ablation experiments, it is confirmed that this method has advantages in generalization performance by comparing with four variants.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Fault Diagnosis of Rolling Bearing Based on Shift Invariant Sparse Feature and Optimized Support Vector Machine
    Yuan, Haodong
    Wu, Nailong
    Chen, Xinyuan
    Wang, Yueying
    MACHINES, 2021, 9 (05)
  • [22] Domain reinforcement feature adaptation methodology with correlation alignment for compound fault diagnosis of rolling bearing
    Wang, Zisheng
    Xuan, Jianping
    Shi, Tielin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [23] LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis
    Zheng, Xiaoyang
    Feng, Zhixia
    Lei, Zijian
    Chen, Lei
    PROCESSES, 2023, 11 (12)
  • [24] A Novel Rolling Bearing Fault Diagnosis Method Based on Adaptive Feature Selection and Clustering
    Hou, Jingbao
    Wu, Yunxin
    Ahmad, Abdulrahaman Shuaibu
    Gong, Hai
    Liu, Lei
    IEEE ACCESS, 2021, 9 : 99756 - 99767
  • [25] AN IMPROVED FEATURE EXTRACTION METHOD FOR ROLLING BEARING FAULT DIAGNOSIS BASED ON MEMD AND PE
    Zhang, Hu
    Zhao, Lei
    Liu, Quan
    Luo, Jingjing
    Wei, Qin
    Zhou, Zude
    Qu, Yongzhi
    POLISH MARITIME RESEARCH, 2018, 25 : 98 - 106
  • [26] Fault diagnosis method of the rolling bearing combining period-energy feature with LMD feature of optimization
    Xiong B.
    Li L.
    Li X.
    Mo Y.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2016, 36 (02): : 372 - 377
  • [27] A New Adversarial Domain Generalization Network Based on Class Boundary Feature Detection for Bearing Fault Diagnosis
    Li, Jingde
    Shen, Changqing
    Kong, Lin
    Wang, Dong
    Xia, Min
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [28] Feature decoupling integrated domain generalization network for bearing fault diagnosis under unknown operating conditions
    Xiao, Qiyang
    Yang, Maolin
    Yan, Jiayuan
    Shi, Wentao
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Adversarial Domain-Invariant Generalization: A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions
    Chen, Liang
    Li, Qi
    Shen, Changqing
    Zhu, Jun
    Wang, Dong
    Xia, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1790 - 1800
  • [30] Intelligent fault diagnosis scheme for rolling bearing based on domain adaptation in one dimensional feature matching
    Sun, Dengyun
    Meng, Zong
    Guan, Yang
    Liu, Jingbo
    Cao, Wei
    Fan, Fengjie
    APPLIED SOFT COMPUTING, 2023, 146