Ultrashort pulsed laser texturing of current collector for Si/C Li-ion anodes: Characterization of electrochemical performance and evolution of interface morphology

被引:0
|
作者
Ravesio, Elisa [1 ]
Montinaro, Giorgio [1 ]
Mincuzzi, Girolamo [2 ]
Negozio, Marco [3 ]
Versaci, Daniele [1 ]
Gartiser, Valentin [2 ]
Lutey, Adrian H. A. [3 ]
Bella, Federico [1 ]
Bodoardo, Silvia [1 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, Electrochem Grp, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] ALPhANOV, Aquitaine Inst Opt, Rue F Mitterrand, F-33400 Talence, France
[3] Univ Parma, Dipartimento Ingn Sistemi & Tecnol Ind, Parco Area Sci 181-A, I-43124 Parma, Italy
关键词
Laser texturing; Li-ion batteries; Generation; 3b; Si/C anodes; Electrochemical performance; Morphology; ELECTRODE; SURFACE;
D O I
10.1016/j.est.2024.115226
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ultrashort pulsed laser texturing of copper current collectors (CCs) for next-generation Li-ion batteries with composite silicon-graphite anodes is conducted to enhance contact area and improve stress distribution at the interface between CCs and electrode active material. Linearly polarized IR femtosecond laser pulses are used to create sub-micrometric ripples (Cu_L1) and micro-grooves (Cu_L2) via self-modeling phenomena, while direct laser interference patterning (DLIP) with UV femtosecond laser pulses is employed to form micrometric cones (Cu_L3). Pristine (Cu_P) and laser-textured CCs are assembled using half-cell configuration for electrochemical testing, revealing improvements in cyclability and capacity retention with laser-textured CCs. During formation cycles at 0.1C, electrodes with Cu_P CCs exhibit an average specific capacity of 641.8 mAh g(-1), whereas those with Cu_L1, Cu_L2, and Cu_L3 CCs achieve 705.3 mAh g(-1), 673.0 mAh g(-1), and 734.9 mAh g(-1), respectively. After 100 cycles, Cu_P electrodes retain 80 % capacity, while laser-textured electrodes show retention of 86.9 %, 83.0 %, and 84.6 %, respectively. AFM analysis of laser-textured CCs before cell assembly indicates a 9-16 % increase in the developed interfacial area ratio (Sdr), with material removal due to laser texturing, <9 %. SEM section analysis before and after electrochemical testing reveals changes in interface morphology, with plastic deformation of CCs due to volumetric changes during charge/discharge cycling. The results suggest that laser texturing helps control plastic deformation at the interface, with SEM analysis providing direct evidence of changes in deformation and stress distribution.
引用
收藏
页数:14
相关论文
共 21 条
  • [1] Nanosecond pulsed laser texturing of Li-ion battery electrode current collectors: Electrochemical characterisation of cathode half-cells
    Ravesio, Elisa
    Lutey, Adrian H. A.
    Versaci, Daniele
    Romoli, Luca
    Bodoardo, Silvia
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2023, 38
  • [2] Crucial contact interface of Si@graphene anodes for high-performance Li-ion batteries
    Ma, Zhihua
    Wang, Liujie
    Wang, Dandan
    Huang, Ruohan
    Wang, Cunjing
    Chen, Gairong
    Miao, Changqing
    Peng, Yingjie
    Li, Aoqi
    Miao, Yu
    APPLIED SURFACE SCIENCE, 2022, 603
  • [3] Graphene modified copper current collector for enhanced electrochemical performance of Li-ion battery
    Kim, Hye Ryeon
    Choi, Won Mook
    SCRIPTA MATERIALIA, 2018, 146 : 100 - 104
  • [4] Enhancing Li-Ion Battery Anodes: Synthesis, Characterization, and Electrochemical Performance of Crystalline C60 Nanorods with Controlled Morphology and Phase Transition
    Yin, Linghong
    Yang, Dingcheng
    Jeon, Injun
    Seo, Jangwon
    Chen, Hong
    Kang, Min Seung
    Park, Minjoon
    Cho, Chae-Ryong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (15) : 18800 - 18811
  • [5] Structural and electrochemical characterization of Fe-Si/C composite anodes for Li-ion batteries synthesized by mechanical alloying
    Dong, H
    Feng, RX
    Ai, XP
    Cao, YL
    Yang, HX
    ELECTROCHIMICA ACTA, 2004, 49 (28) : 5217 - 5222
  • [6] Controlling Surface Oxides in Si/C Nanocomposite Anodes for High-Performance Li-Ion Batteries
    Zheng, Guorui
    Xiang, Yuxuan
    Xu, Liangfan
    Luo, Hao
    Wang, Baolin
    Liu, Yang
    Han, Xiang
    Zhao, Weimin
    Chen, Shijian
    Chen, Hailong
    Zhang, Qiaobao
    Zhu, Ting
    Yang, Yong
    ADVANCED ENERGY MATERIALS, 2018, 8 (29)
  • [7] Dendritic Copper Current Collectors as a Capacity Boosting Material for Polymer-Templated Si/Ge/C Anodes in Li-Ion Batteries
    Weindl, Christian L.
    Fajman, Christian E.
    Xu, Zhuijun
    Zheng, Tianle
    Moehl, Gilles E.
    Chaulagain, Narendra
    Shankar, Karthik
    Gilles, Ralph
    Faessler, Thomas F.
    Mueller-Buschbaum, Peter
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (02) : 2309 - 2318
  • [8] Influence of formation process on gas generation and electrochemical performance of Li-rich/Si@C Li-ion batteries
    Shi X.
    Ma L.
    Chang Z.
    Wang J.
    Cailiao Gongcheng/Journal of Materials Engineering, 2022, 50 (05): : 112 - 121
  • [9] Microstructure and electrochemical performance of Si-SiO2-C composites as the negative material for Li-ion batteries
    Lu, Zhiwei
    Zhang, Lianqi
    Liu, Xingjiang
    JOURNAL OF POWER SOURCES, 2010, 195 (13) : 4304 - 4307
  • [10] Micro-structured Si@Cu3Si@C ternary composite anodes for high-performance Li-ion batteries
    Hui Zhang
    Hui Xu
    Xiaofei Lou
    Hong Jin
    Ping Zong
    Shiwei Li
    Yu Bai
    Fei Ma
    Ionics, 2019, 25 : 4667 - 4673