Gabor Phase Retrieval via Semidefinite Programming

被引:0
作者
Jaming, Philippe [1 ]
Rathmair, Martin [2 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, F-33400 Talence, France
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Phase retrieval; Phase-less sampling; Semi-definite programming; Matrix completion; RECOVERY; FRAMES;
D O I
10.1007/s10208-024-09683-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of reconstructing a function f is an element of L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L<^>2({\mathbb R})$$\end{document} given phase-less samples of its Gabor transform, which is defined by Gf(x,y):=214 integral Rf(t)e-pi(t-x)2e-2 pi iytdt,(x,y)is an element of R2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {G}}f(x,y) :=2<^>{\frac{1}{4}} \int _{\mathbb R}f(t) e<^>{-\pi (t-x)<^>2} e<^>{-2\pi i y t}\,\text{ d }t,\quad (x,y)\in {\mathbb R}<^>2. \end{aligned}$$\end{document}More precisely, given sampling positions Omega subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq {\mathbb R}<^>2$$\end{document} the task is to reconstruct f (up to global phase) from measurements {|Gf(omega)|:omega is an element of Omega}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{|{\mathcal {G}}f(\omega )|: \,\omega \in \Omega \}$$\end{document}. This non-linear inverse problem is known to suffer from severe ill-posedness. As for any other phase retrieval problem, constructive recovery is a notoriously delicate affair due to the lack of convexity. One of the fundamental insights in this line of research is that the connectivity of the measurements is both necessary and sufficient for reconstruction of phase information to be theoretically possible. In this article we propose a reconstruction algorithm which is based on solving two convex problems and, as such, amenable to numerical analysis. We show, empirically as well as analytically, that the scheme accurately reconstructs from noisy data within the connected regime. Moreover, to emphasize the practicability of the algorithm we argue that both convex problems can actually be reformulated as semi-definite programs for which efficient solvers are readily available. The approach is based on ideas from complex analysis, Gabor frame theory as well as matrix completion. As a byproduct, we also obtain improved truncation error for Gabor expensions with Gaussian generators.
引用
收藏
页数:67
相关论文
共 39 条
[1]   Phase Retrieval from Sampled Gabor Transform Magnitudes: Counterexamples [J].
Alaifari, Rima ;
Wellershoff, Matthias .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
[2]   Stability Estimates for Phase Retrieval from Discrete Gabor Measurements [J].
Alaifari, Rima ;
Wellershoff, Matthias .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (02)
[3]   PHASE RETRIEVAL IN THE GENERAL SETTING OF CONTINUOUS FRAMES FOR BANACH SPACES [J].
Alaifari, Rima ;
Grohs, Philipp .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) :1895-1911
[4]   Non-Convex Phase Retrieval From STFT Measurements [J].
Bendory, Tamir ;
Eldar, Yonina C. ;
Boumal, Nicolas .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (01) :467-484
[5]  
Bonnefont M., 2022, GLOBAL SENSITIVITY A
[6]  
Cahill J, 2016, Transactions of the American Mathematical Society Series B, V3, P63, DOI [10.1090/btran/12, 10.1090/btran/12, DOI 10.1090/BTRAN/12, 10.1090/btran/2016-03-03, DOI 10.1090/BTRAN/2016-03-03]
[7]   Phase Retrieval via Matrix Completion [J].
Candes, Emmanuel J. ;
Eldar, Yonina C. ;
Strohmer, Thomas ;
Voroninski, Vladislav .
SIAM REVIEW, 2015, 57 (02) :225-251
[8]   PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming [J].
Candes, Emmanuel J. ;
Strohmer, Thomas ;
Voroninski, Vladislav .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (08) :1241-1274
[9]  
Cheeger J., 1971, A lower bound for the smallest eigenvalue of the Laplacian
[10]  
Christensen O., 2003, INTRO FRAMES RIESZ B