Metabolic Engineering of Zymomonas mobilis for Xylonic Acid Production from Lignocellulosic Hydrolysate

被引:1
作者
Ruan, Banrui [1 ]
Yan, Xiongying [1 ]
He, Zhaoqing [1 ]
He, Qiaoning [1 ]
Yang, Shihui [1 ]
机构
[1] Hubei Univ, Sch Life Sci, State Key Lab Biocatalysis & Enzyme Engn, Wuhan 430062, Peoples R China
来源
FERMENTATION-BASEL | 2025年 / 11卷 / 03期
关键词
xylonic acid; xylose dehydrogenase; Zymomonas mobilis; metabolic engineering; lignocellulosic hydrolysate; ESCHERICHIA-COLI; D-XYLOSE; BIOCONVERSION;
D O I
10.3390/fermentation11030141
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bio-based xylonic acid produced from inexpensive lignocellulosic biomass has enormous market potential and enhances the overall economic benefits of biorefinery processes. In this study, the introduction of genes encoding xylose dehydrogenase driven by the promoter Ppdc into Z. mobilis using a plasmid vector resulted in the accumulation of xylonic acid at a titer of 16.8 +/- 1.6 g/L. To achieve stable xylonic acid production, a gene cassette for xylonic acid production was integrated into the genome at the chromosomal locus of ZMO0038 and ZMO1650 using the endogenous type I-F CRISPR-Cas system. The titer of the resulting recombinant strain XA3 reduced to 12.2 +/- 0.56 g/L, which could be the copy number difference between the plasmid and chromosomal integration. Oxygen content was then identified to be the key factor for xylonic acid production. To further increase xylonic acid production capability, a recombinant strain, XA9, with five copies of a gene cassette for xylonic acid production was constructed by integrating the gene cassette into the genome at the chromosomal locus of ZMO1094, ZMO1547, and ZMO1577 on the basis of XA3. The titer of xylonic acid increased to 51.9 +/- 0.1 g/L with a maximum yield of 1.10 g/g, which is close to the theoretical yield in a pure sugar medium. In addition, the recombinant strain XA9 is genetically stable and can produce 16.2 +/- 0.14 g/L of xylonic acid with a yield of 1.03 +/- 0.01 g/g in the lignocellulosic hydrolysate. Our study thus constructed a recombinant strain, XA9, of Z. mobilis for xylonic acid production from lignocellulosic hydrolysate, demonstrating the capability of Z. mobilis as a biorefinery chassis for economic lignocellulosic biochemical production.
引用
收藏
页数:14
相关论文
共 47 条
[1]   Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources [J].
An, Ning ;
Chen, Xin ;
Sheng, Huakang ;
Wang, Jia ;
Sun, Xinxiao ;
Yan, Yajun ;
Shen, Xiaolin ;
Yuan, Qipeng .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2021, 48 (9-10)
[2]   Understanding D-xylonic acid accumulation: a cornerstone for better metabolic engineering approaches [J].
Banares, Angelo B. ;
Nisola, Grace M. ;
Valdehuesa, Kris Nino G. ;
Lee, Won-Keun ;
Chung, Wook-Jin .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 105 (13) :5309-5324
[3]   Xylonic acid production from xylose by Paraburkholderia sacchari [J].
Bondar, Maryna ;
da Fonseca, M. Manuela R. ;
Cesario, M. Teresa .
BIOCHEMICAL ENGINEERING JOURNAL, 2021, 170
[4]   PRODUCTION OF XYLONIC ACID BY PSEUDOMONAS-FRAGI [J].
BUCHERT, J ;
VIIKARI, L ;
LINKO, M ;
MARKKANEN, P .
BIOTECHNOLOGY LETTERS, 1986, 8 (08) :541-546
[5]   Metabolic Engineering of Escherichia coli for the Production of Xylonate [J].
Cao, Yujin ;
Xian, Mo ;
Zou, Huibin ;
Zhang, Haibo .
PLOS ONE, 2013, 8 (07)
[6]   Efficient genome-editing tools to engineer the recalcitrant non-model industrial microorganism Zymomonas mobilis [J].
Geng, Binan ;
Wu, Yalun ;
Wu, Xinyan ;
Yang, Yongfu ;
Zhou, Peng ;
Chen, Yunhaon ;
Zhou, Xuan ;
Liu, Chenguang ;
Bai, Fengwu ;
Xu, Ping ;
He, Qiaoning ;
Yang, Shihui .
TRENDS IN BIOTECHNOLOGY, 2024, 42 (11) :1551-1575
[7]   Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products [J].
Han, Jian ;
Hamza, Faqiha ;
Guo, Jianming ;
Sayed, Mahmoud ;
Pyo, Sang-Hyun ;
Xu, Yong .
BIOTECHNOLOGY ADVANCES, 2025, 79
[8]   Zymomonas mobilis: a novel platform for future biorefineries [J].
He, Ming Xiong ;
Wu, Bo ;
Qin, Han ;
Ruan, Zhi Yong ;
Tan, Fu Rong ;
Wang, Jing Li ;
Shui, Zong Xia ;
Dai, Li Chun ;
Zhu, Qi Li ;
Pan, Ke ;
Tang, Xiao Yu ;
Wang, Wen Guo ;
Hu, Qi Chun .
BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
[9]   Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues [J].
He, Yao ;
Li, Hongxing ;
Chen, Liyuan ;
Zheng, Liyuan ;
Ye, Chunhui ;
Hou, Jin ;
Bao, Xiaoming ;
Liu, Weifeng ;
Shen, Yu .
MICROBIAL BIOTECHNOLOGY, 2021, 14 (05) :2059-2071
[10]   Xylitol production from passion fruit peel hydrolysate: Optimization of hydrolysis and fermentation processes [J].
Infante-Neta, Aida Aguilera ;
de Carvalho, Athilla Antonio Oliveira ;
D'Almeida, Alan Portal ;
Goncalves, Luciana Rocha Barros ;
de Albuquerque, Tiago Lima .
BIORESOURCE TECHNOLOGY, 2024, 414