Structure-preserving methods for Marcus stochastic Hamiltonian systems with additive Levy noise

被引:0
|
作者
Zhan, Qingyi [1 ]
Duan, Jinqiao [2 ,3 ,4 ]
Li, Xiaofan [5 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Comp & Informat Sci, Fuzhou 350002, Peoples R China
[2] Great Bay Univ, Dept Math, Dongguan 523000, Guangdong, Peoples R China
[3] Great Bay Univ, Dept Phys, Dongguan 523000, Guangdong, Peoples R China
[4] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Hubei, Peoples R China
[5] IIT, Dept Appl Math, Chicago, IL 60616 USA
关键词
INTEGRATION; DRIVEN;
D O I
10.1063/5.0213902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general structure-preserving method is proposed for a class of Marcus stochastic Hamiltonian systems driven by additive Levy noise. The convergence of the symplectic Euler scheme for this systems is investigated by Generalized Milstein Theorem. Realizable numerical implementation of this scheme is also provided in details. Numerical experiments are presented to illustrate the effectiveness and superiority of the proposed scheme. Applications of the method to solve two mathematical physical problems are provided.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise
    Pamela M. Burrage
    Kevin Burrage
    Numerical Algorithms, 2014, 65 : 519 - 532
  • [2] Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise
    Burrage, Pamela M.
    Burrage, Kevin
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 519 - 532
  • [3] Structure-Preserving Numerical Methods for Stochastic Poisson Systems
    Hong, Jialin
    Ruan, Jialin
    Sun, Liying
    Wang, Lijin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (03) : 802 - 830
  • [4] STRUCTURE-PRESERVING NUMERICAL METHODS FOR A CLASS OF STOCHASTIC POISSON SYSTEMS
    Wang, Yuchao
    Wang, Lijin
    Cao, Yanzhao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (2-3) : 194 - 219
  • [5] DATA-DRIVEN STRUCTURE-PRESERVING MODEL REDUCTION FOR STOCHASTIC HAMILTONIAN SYSTEMS
    Tyranowski, Tomasz M.
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024, 11 (02): : 220 - 255
  • [6] Structure-preserving stabilization of Hamiltonian control systems
    Abeber, H.
    Katzschmann, M.
    Systems and Control Letters, 1994, 22 (04): : 281 - 285
  • [7] Linearly implicit structure-preserving schemes for Hamiltonian systems
    Eidnes, Solve
    Li, Lu
    Sato, Shun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [8] STRUCTURE-PRESERVING STABILIZATION OF HAMILTONIAN CONTROL-SYSTEMS
    ABESSER, H
    KATZSCHMANN, M
    SYSTEMS & CONTROL LETTERS, 1994, 22 (04) : 281 - 285
  • [9] Meshless structure-preserving GRBF collocation methods for stochastic Maxwell equations with multiplicative noise
    Hou, Baohui
    APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 337 - 355
  • [10] Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems
    Babak Maboudi Afkham
    Jan S. Hesthaven
    Journal of Scientific Computing, 2019, 81 : 3 - 21