Quantum Dynamics Simulations of Exciton Polariton Transport

被引:6
作者
Chng, Benjamin X. K. [1 ]
Mondal, M. Elious [2 ]
Ying, Wenxiang [2 ]
Huo, Pengfei [3 ,4 ,5 ]
机构
[1] Univ Rochester, Dept Phys, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[3] Univ Rochester, Inst Opt, Hajim Sch Engn & Appl Sci, Dept Chem, Rochester, NY 14627 USA
[4] Univ Rochester, Ctr Coherence, Rochester, NY 14627 USA
[5] Univ Rochester, Quantum Opt, Rochester, NY 14627 USA
关键词
Polariton Transport; Ballistic Motion; ExcitonPolariton; Light-Matter Interactions; Quantum ElectrodynamicsSimulations; Group Velocity Renormalization;
D O I
10.1021/acs.nanolett.4c05674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments. To elucidate the impacts of these dissipative mechanisms on polariton transport, we developed an efficient quantum dynamics approach that allows us to directly simulate polariton transport under the collective coupling regime and beyond long-wavelength approximation. Our numerical results suggest a renormalization of the group velocities with stronger exciton-phonon coupling strengths and a smaller Q-factor. We observe the transition from ballistic to diffusive propagation as well as the quality-factor-dependent behavior of the transient mean square displacement, agreeing well with the recent experimental measurements.
引用
收藏
页码:1617 / 1622
页数:6
相关论文
共 27 条
[1]   Coherent transient exciton transport in disordered polaritonic wires [J].
Aroeira, Gustavo J. R. ;
Kairys, Kyle T. ;
Ribeiro, Raphael F. .
NANOPHOTONICS, 2024, 13 (14) :2553-2564
[2]   From enhanced diffusion to ultrafast ballistic motion of hybrid light-matter excitations [J].
Balasubrahmaniyam, Mukundakumar ;
Simkhovich, Arie ;
Golombek, Adina ;
Sandik, Gal ;
Ankonina, Guy ;
Schwartz, Tal .
NATURE MATERIALS, 2023, 22 (03) :338-+
[3]   Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays [J].
Berghuis, Anton Matthijs ;
Tichauer, Ruth H. ;
de Jong, Lianne M. A. ;
Sokolovskii, Ilia ;
Bai, Ping ;
Ramezani, Mohammad ;
Murai, Shunsuke ;
Groenhof, Gerrit ;
Rivas, Jaime Gomez .
ACS PHOTONICS, 2022, 9 (07) :2263-2272
[4]   Mechanism of Molecular Polariton Decoherence in the Collective Light-Matter Couplings Regime [J].
Chng, Benjamin X. K. ;
Ying, Wenxiang ;
Lai, Yifan ;
Vamivakas, A. Nickolas ;
Cundiff, Steven T. ;
Krauss, Todd D. ;
Huo, Pengfei .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (47) :11773-11783
[5]   Imaging material functionality through three-dimensional nanoscale tracking of energy flow [J].
Delor, Milan ;
Weaver, Hannah L. ;
Yu, QinQin ;
Ginsberg, Naomi S. .
NATURE MATERIALS, 2020, 19 (01) :56-+
[6]   Exciton-polariton Bose-Einstein condensation [J].
Deng, Hui ;
Haug, Hartmut ;
Yamamoto, Yoshihisa .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1489-1537
[7]   Polariton Localization and Dispersion Properties of Disordered Quantum Emitters in Multimode Microcavities [J].
Engelhardt, Georg ;
Cao, Jianshu .
PHYSICAL REVIEW LETTERS, 2023, 130 (21)
[8]  
Hu D., 2024, CHEMRXIV, DOI [10.26434/chemrxiv-2024-t818f, DOI 10.26434/CHEMRXIV-2024-T818F]
[9]   Enhanced Two-Dimensional Exciton Propagation via Strong Light-Matter Coupling with Surface Lattice Plasmons [J].
Jin, Linrui ;
Sample, Alexander D. ;
Sun, Dewei ;
Gao, Yao ;
Deng, Shibin ;
Li, Ran ;
Dou, Letian ;
Odom, Teri W. ;
Huang, Libai .
ACS PHOTONICS, 2023, 10 (06) :1983-1991
[10]  
Klafter J., 2011, First Steps in RandomWalks: From Tools to Applications