LiRaFusion: Deep Adaptive LiDAR-Radar Fusion for 3D Object Detection

被引:1
作者
Song, Jingyu [1 ]
Zhao, Lingjun [1 ]
Skinner, Katherine A. [1 ]
机构
[1] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024) | 2024年
关键词
NETWORK;
D O I
10.1109/ICRA57147.2024.10611436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose LiRaFusion to tackle LiDAR-radar fusion for 3D object detection to fill the performance gap of existing LiDAR-radar detectors. To improve the feature extraction capabilities from these two modalities, we design an early fusion module for joint voxel feature encoding, and a middle fusion module to adaptively fuse feature maps via a gated network. We perform extensive evaluation on nuScenes to demonstrate that LiRaFusion leverages the complementary information of LiDAR and radar effectively and achieves notable improvement over existing methods.
引用
收藏
页码:18250 / 18257
页数:8
相关论文
共 48 条
[41]  
Xu Z., 2023, IEEE T NEURAL NETWOR
[42]   SECOND: Sparsely Embedded Convolutional Detection [J].
Yan, Yan ;
Mao, Yuxing ;
Li, Bo .
SENSORS, 2018, 18 (10)
[43]   RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [J].
Yang, Bin ;
Guo, Runsheng ;
Liang, Ming ;
Casas, Sergio ;
Urtasun, Raquel .
COMPUTER VISION - ECCV 2020, PT XVIII, 2020, 12363 :496-512
[44]   Center-based 3D Object Detection and Tracking [J].
Yin, Tianwei ;
Zhou, Xingyi ;
Krahenbuhl, Philipp .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :11779-11788
[45]   3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-view Spatial Feature Fusion for 3D Object Detection [J].
Yoo, Jin Hyeok ;
Kim, Yecheol ;
Kim, Jisong ;
Choi, Jun Won .
COMPUTER VISION - ECCV 2020, PT XXVII, 2020, 12372 :720-736
[46]  
Zhang A, 2023, Arxiv, DOI arXiv:2309.13549
[47]   Adaptive Context-Aware Multi-Modal Network for Depth Completion [J].
Zhao, Shanshan ;
Gong, Mingming ;
Fu, Huan ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :5264-5276
[48]   Towards Deep Radar Perception for Autonomous Driving: Datasets, Methods, and Challenges [J].
Zhou, Yi ;
Liu, Lulu ;
Zhao, Haocheng ;
Lopez-Benitez, Miguel ;
Yu, Limin ;
Yue, Yutao .
SENSORS, 2022, 22 (11)