LiRaFusion: Deep Adaptive LiDAR-Radar Fusion for 3D Object Detection

被引:1
作者
Song, Jingyu [1 ]
Zhao, Lingjun [1 ]
Skinner, Katherine A. [1 ]
机构
[1] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024) | 2024年
关键词
NETWORK;
D O I
10.1109/ICRA57147.2024.10611436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose LiRaFusion to tackle LiDAR-radar fusion for 3D object detection to fill the performance gap of existing LiDAR-radar detectors. To improve the feature extraction capabilities from these two modalities, we design an early fusion module for joint voxel feature encoding, and a middle fusion module to adaptively fuse feature maps via a gated network. We perform extensive evaluation on nuScenes to demonstrate that LiRaFusion leverages the complementary information of LiDAR and radar effectively and achieves notable improvement over existing methods.
引用
收藏
页码:18250 / 18257
页数:8
相关论文
共 48 条
[1]  
Barnes D, 2020, IEEE INT CONF ROBOT, P6433, DOI [10.1109/icra40945.2020.9196884, 10.1109/ICRA40945.2020.9196884]
[2]  
Bijelic M., 2020, IEEE
[3]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[4]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[5]  
Chen X., 2023, P IEEECVF C COMP
[6]  
Contributors M., 2020, MMDetection 3D: OpenMMLab next-generation platform for general 3D object detection
[7]   DeepFusion: A Robust and Modular 3D Object Detector for Lidars, Cameras and Radars [J].
Drews, Florian ;
Feng, Di ;
Faion, Florian ;
Rosenbaum, Lars ;
Ulrich, Michael ;
Glaser, Claudius .
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, :560-567
[8]   Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges [J].
Feng, Di ;
Haase-Schutz, Christian ;
Rosenbaum, Lars ;
Hertlein, Heinz ;
Glaser, Claudius ;
Timm, Fabian ;
Wiesbeck, Werner ;
Dietmayer, Klaus .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) :1341-1360
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]   Adaptive Mixtures of Local Experts [J].
Jacobs, Robert A. ;
Jordan, Michael I. ;
Nowlan, Steven J. ;
Hinton, Geoffrey E. .
NEURAL COMPUTATION, 1991, 3 (01) :79-87