Early Detection of Left Ventricular Dysfunction With Machine Learning-Based Strain Imaging in Aortic Stenosis Patients

被引:0
作者
Yahav, Amir [1 ]
Adam, Dan [1 ]
机构
[1] Technion Israel Inst Technol, Fac Biomed Engn, Haifa, Israel
来源
ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES | 2024年 / 41卷 / 11期
关键词
aortic stenosis; classification; echocardiography; machine learning; myocardial strain; GLOBAL LONGITUDINAL STRAIN; SPECKLE-TRACKING; MYOCARDIAL FIBROSIS; AMERICAN SOCIETY; ECHOCARDIOGRAPHY; RECOMMENDATIONS; DEFORMATION; QUANTIFICATION; ALGORITHM; DISEASE;
D O I
10.1111/echo.70007
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
PurposeAortic stenosis (AS) is a common cardiovascular condition where early detection of left ventricular (LV) dysfunction is essential for timely intervention and optimal management. Current echocardiographic measurements, such as ejection fraction (EF), are insensitive to minor changes in LV function, and strain imaging is typically limited to the global longitudinal strain (GLS) parameter due to robustness issues. This study introduces a novel, fully automatic algorithm to enhance the detection of LV dysfunction in AS patients using multiple strain imaging parameters.MethodsWe applied supervised machine-learning techniques to classify data from 82 severe AS patients, 96 chest pain subjects, and 319 healthy volunteers.ResultsOur model significantly outperformed EF and GLS in distinguishing AS patients from healthy volunteers (area under the curve [AUC] = 0.97 vs. 0.88 and 0.82, respectively). It also surpassed EF and GLS in differentiating AS patients from chest pain subjects (AUC = 0.95 vs. 0.90 and 0.55, respectively).ConclusionThis novel, clinically interpretable model leverages the potential of strain imaging to enhance diagnostic accuracy and guide clinical decision-making in LV dysfunction, thereby improving clinical practice.
引用
收藏
页数:16
相关论文
共 65 条
[1]   Best-Practice Recommendations for Defining, Identifying, and Handling Outliers [J].
Aguinis, Herman ;
Gottfredson, Ryan K. ;
Joo, Harry .
ORGANIZATIONAL RESEARCH METHODS, 2013, 16 (02) :270-301
[2]   Artificial intelligence and echocardiography [J].
Alsharqi M. ;
Woodward W.J. ;
Mumith J.A. ;
Markham D.C. ;
Upton R. ;
Leeson P. .
Echo Research & Practice, 2018, 5 (4) :R115-R126
[3]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[4]   Shifting from Left Ventricular Ejection Fraction to Strain Imaging in Aortic Stenosis [J].
Anastasiou, Vasileios ;
Daios, Stylianos ;
Bazmpani, Maria-Anna ;
Moysidis, Dimitrios V. ;
Zegkos, Thomas ;
Karamitsos, Theodoros ;
Ziakas, Antonios ;
Kamperidis, Vasileios .
DIAGNOSTICS, 2023, 13 (10)
[5]   Aortic Stenosis, a Left Ventricular Disease: Insights from Advanced Imaging [J].
Badiani, Sveeta ;
van Zalen, Jet ;
Treibel, Thomas A. ;
Bhattacharyya, Sanjeev ;
Moon, James C. ;
Lloyd, Guy .
CURRENT CARDIOLOGY REPORTS, 2016, 18 (08)
[6]  
Baumgartner H, 2017, J AM SOC ECHOCARDIOG, V30, P372, DOI [10.1016/j.echo.2017.02.009, 10.1093/ehjci/jew335]
[7]   Aortic valve disease in the older adult [J].
Bhatia, Neal ;
Basra, Sukhdeep S. ;
Skolnick, Adam H. ;
Wenger, Nanette K. .
JOURNAL OF GERIATRIC CARDIOLOGY, 2016, 13 (12) :941-944
[8]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[9]   The left ventricle in aortic stenosis - imaging assessment and clinical implications [J].
Calin, Andreea ;
Rosca, Monica ;
Beladan, Carmen Cristiana ;
Enache, Roxana ;
Mateescu, Anca Doina ;
Ginghina, Carmen ;
Popescu, Bogdan Alexandru .
CARDIOVASCULAR ULTRASOUND, 2015, 13
[10]   Tissue Velocities and Myocardial Deformation in Asymptomatic and Symptomatic Aortic Stenosis [J].
Carstensen, Helle Gervig ;
Larsen, Linnea Hornbech ;
Hassager, Christian ;
Kofoed, Klaus Fuglsang ;
Dalsgaard, Morten ;
Kristensen, Charlotte Burup ;
Jensen, Jan Skov ;
Mogelvang, Rasmus .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2015, 28 (08) :969-980