Learning Linear Non-Gaussian Polytree Models

被引:0
作者
Tramontano, Daniele [1 ,2 ]
Monod, Anthea [3 ]
Drton, Mathias [1 ,2 ]
机构
[1] Tech Univ Munich, Dept Math, Munich, Germany
[2] Tech Univ Munich, Munich Data Sci Inst, Munich, Germany
[3] Imperial Coll London, Dept Math, London, England
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180 | 2022年 / 180卷
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of graphical causal discovery, we adapt the versatile framework of linear non-Gaussian acyclic models (LiNGAMs) to propose new algorithms to efficiently learn graphs that are polytrees. Our approach combines the Chow-Liu algorithm, which first learns the undirected tree structure, with novel schemes to orient the edges. The orientation schemes assess algebraic relations among moments of the data-generating distribution and are computationally inexpensive. We establish high-dimensional consistency results for our approach and compare different algorithmic versions in numerical experiments.
引用
收藏
页码:1960 / 1969
页数:10
相关论文
共 32 条
  • [1] Amendola Carlos, 2021, Third-order moment varieties of linear non-Gaussian graphical models
  • [2] Boix-Adsera Enric, 2021, arXiv
  • [3] APPROXIMATING DISCRETE PROBABILITY DISTRIBUTIONS WITH DEPENDENCE TREES
    CHOW, CK
    LIU, CN
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (03) : 462 - +
  • [4] Comon Pierre., HDB BLIND SOURCE SEP
  • [5] On asymmetric properties of the correlation coefficient in the regression setting
    Dodge, Y
    Rousson, V
    [J]. AMERICAN STATISTICIAN, 2001, 55 (01) : 51 - 54
  • [6] Structure Learning in Graphical Modeling
    Drton, Mathias
    Maathuis, Marloes H.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 4, 2017, 4 : 365 - 393
  • [7] Edwards D, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-18
  • [8] Harris N, 2013, J MACH LEARN RES, V14, P3365
  • [9] Hoyer Patrik, 2008, UAI
  • [10] Estimation of causal effects using linear non-Gaussian causal models with hidden variables
    Hoyer, Patrik O.
    Shimizu, Shohei
    Kerminen, Antti J.
    Palviainen, Markus
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 49 (02) : 362 - 378