ON b-CONCATENATIONS OF TWO k-GENERALIZED FIBONACCI NUMBERS

被引:0
作者
Alan, M. [1 ]
Altassan, A. [2 ]
机构
[1] Yildiz Tech Univ, Dept Math, TR-34210 Istanbul, Turkiye
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Fibonacci number; k-generalized Fibonacci number; k-Fibonacci numbers; concatenation; linear form in logarithms; Diophantine equation; LOGARITHMS;
D O I
10.1007/s10474-025-01517-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 2 be an integer. One of the generalization of the classical Fibonacci sequence is defined by the recurrence relation F-n((k) )= F-n-1((k) )+ & ctdot;+ F-n-k((k)) for all n >= 2 with the initial values F-i((k) )= 0 for i = 2 - k,& mldr;, 0 and F-1((k)) = 1 .F-n((k)) is an order k generalization of the Fibonacci sequence and it is called k-generalized Fibonacci sequence or shortly k-Fibonacci sequence. Banks and Luca [7], among other things, determined all Fibonacci numbers which are concatenations of two Fibonacci numbers. In this paper, we consider the analogue of this problem in more general manner by taking into account the concatenations of two terms of the same sequence in base b >= 2. First, we show that there exists only finitely many such concatenations for each k >= 2 and b >= 2. Next, we completely determine all these concatenations for all k >= 2 and 2 <= b <= 10.
引用
收藏
页数:20
相关论文
共 25 条
  • [1] Adedji K. N., 2024, Math. Pannon., V30, P91
  • [2] On b-concatenations of Padovan and Perrin numbers
    Adedji, Kouessi Norbert
    Kandhil, Neelam
    Togbe, Alain
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [3] Adédji KN, 2024, P INDIAN AS-MATH SCI, V134, DOI 10.1007/s12044-024-00784-4
  • [4] On Concatenations of Fibonacci and Lucas Numbers
    Alan, Murat
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2725 - 2741
  • [5] Fibonacci numbers as mixed concatenations of Fibonacci and Lucas numbers
    Altassan, Alaa
    Alan, Murat
    [J]. MATHEMATICA SLOVACA, 2024, 74 (03) : 563 - 576
  • [6] Bang A. S., 1886, Tidsskrift Mat., V4, P70
  • [7] Banks WD, 2005, J INTEGER SEQ, V8
  • [8] Bravo EF, 2023, MATH COMMUN, V28, P105
  • [9] A DIOPHANTINE EQUATION IN k-FIBONACCI NUMBERS AND REPDIGITS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    [J]. COLLOQUIUM MATHEMATICUM, 2018, 152 (02) : 299 - 315
  • [10] POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    [J]. MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 85 - 100