Enhancing Patient-Physician Communication: Simulating African American Vernacular English in Medical Diagnostics with Large Language Models

被引:0
作者
Lee, Yeawon [1 ]
Chang, Chia-Hsuan [2 ]
Yang, Christopher C. [1 ]
机构
[1] Drexel Univ, Philadelphia, PA 19104 USA
[2] Yale Univ, New Haven, CT 06510 USA
基金
美国国家科学基金会;
关键词
Large language model; Health disparities; Patient simulation; Patient-physician communication gap; Communication training; HEALTH; RACE/ETHNICITY; DISPARITIES;
D O I
10.1007/s41666-025-00194-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effective communication is crucial in reducing health disparities. However, linguistic differences, such as African American Vernacular English (AAVE), can lead to communication gaps between patients and physicians, negatively affecting care and outcomes. This study examines whether large language models (LLMs), specifically GPT-4 and Llama 3.3, can replicate AAVE in simulated clinical dialogues to improve cultural sensitivity. We tested four prompt types-BaseP, DemoP, LingP, and CompP-using United States Medical Licensing Examination (USMLE) case simulations. Statistical analyses on the models' outputs showed a significant difference among prompt types for both GPT-4 (F(2,70) = 6.218, p = 0.003) and Llama 3.3 (F(2,70) = 12.124, p < 0.001), indicating that including demographic information and/or explicit AAVE cues influences each model's output. Combining demographic and linguistic cues (CompP) yielded the highest mean AAVE feature counts (e.g., 9.83 for GPT-4 vs. 16.06 for Llama 3.3), although neither model fully captured the diversity of AAVE. Moreover, simply mentioning African American demographics triggers extra informal forms, suggesting built-in stereotypes or biases in both models. Overall, these findings highlight the promise of LLMs for culturally sensitive healthcare communication, while underscoring the need for continued refinement to address stereotypes and more accurately represent diverse linguistic styles.
引用
收藏
页码:119 / 153
页数:35
相关论文
共 36 条
[1]  
ALMutairi M., 2024, P 2 AR NAT LANG PROC, P11, DOI [10.18653/v1/2024.arabicnlp-1.2, DOI 10.18653/V1/2024.ARABICNLP-1.2]
[2]  
Avila Mai Mercede, 2016, ABNF J, V27, P83
[3]   Language and Immigrant Status Effects on Disparities in Hispanic Children's Health Status and Access to Health Care [J].
Avila, Rosa M. ;
Bramlett, Matthew D. .
MATERNAL AND CHILD HEALTH JOURNAL, 2013, 17 (03) :415-423
[4]   AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias [J].
Bellamy, R. K. E. ;
Dey, K. ;
Hind, M. ;
Hoffman, S. C. ;
Houde, S. ;
Kannan, K. ;
Lohia, P. ;
Martino, J. ;
Mehta, S. ;
Mojsilovie, A. ;
Nagar, S. ;
Ramamurthy, K. Natesan ;
Richards, J. ;
Saha, D. ;
Sattigeri, P. ;
Singh, M. ;
Varshney, K. R. ;
Zhang, Y. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2019, 63 (4-5)
[5]   To Be Liked Versus Respected: Divergent Goals in Interracial Interactions [J].
Bergsieker, Hilary B. ;
Shelton, J. Nicole ;
Richeson, Jennifer A. .
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 2010, 99 (02) :248-264
[6]   Socioeconomic Status, Race/Ethnicity, and Asthma in Youth [J].
Carroll, Kecia .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 188 (10) :1180-1181
[7]   Measuring patients' perceptions of communication with healthcare providers: Do differences in demographic and socioeconomic characteristics matter? [J].
DeVoe, Jennifer E. ;
Wallace, Lorraine S. ;
Fryer, George E., Jr. .
HEALTH EXPECTATIONS, 2009, 12 (01) :70-80
[8]   US Maternal Mortality Within a Global Context: Historical Trends, Current State, and Future Directions [J].
Douthard, Regine A. ;
Martin, Iman K. ;
Chapple-McGruder, Theresa ;
Langer, Ana ;
Chang, Soju .
JOURNAL OF WOMENS HEALTH, 2021, 30 (02) :168-177
[9]   The burden of disease associated with being African-American in the United States and the contribution of socio-economic status [J].
Franks, Peter ;
Muennig, Peter ;
Lubetkin, Erica ;
Jia, Haomiao .
SOCIAL SCIENCE & MEDICINE, 2006, 62 (10) :2469-2478
[10]   A Natural Language Processing-Based Virtual Patient Simulator and Intelligent Tutoring System for the Clinical Diagnostic Process: Simulator Development and Case Study [J].
Furlan, Raffaello ;
Gatti, Mauro ;
Mene, Roberto ;
Shiffer, Dana ;
Marchiori, Chiara ;
Levra, Alessandro Giaj ;
Saturnino, Vincenzo ;
Brunetta, Enrico ;
Dipaola, Franca .
JMIR MEDICAL INFORMATICS, 2021, 9 (04)