Traffic flow forecasting based on augmented multi-component recurrent graph attention network

被引:0
|
作者
Yao, Yuan [1 ,2 ]
Chen, Linlong [3 ]
Wang, Xianchen [4 ]
Wu, Xiaojun [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Mech Engn, Xian 710000, Peoples R China
[2] Henan Univ Sci & Technol, Sch Appl Engn, Luoyang, Henan, Peoples R China
[3] Guiyang Inst Humanities & Technol, Sch Big Data & Informat Engn, Guiyang, Peoples R China
[4] Shenzhen Polytech, Shenzhen, Peoples R China
关键词
Traffic flow forecasting; graph attention networks; augmented multi-component; spatial-temporal correlation; PREDICTION;
D O I
10.1080/19427867.2025.2450577
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial-temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial-temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] DGTNet:dynamic graph attention transformer network for traffic flow forecasting
    Chen, Jing
    Li, Wuzhi
    Chen, Shuixuan
    Zhang, Guowei
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [22] GECRAN: Graph embedding based convolutional recurrent attention network for traffic flow prediction
    Yan, Jianqiang
    Zhang, Lin
    Gao, Yuan
    Qu, Boting
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [23] sAMDGCN: sLSTM-Attention-Based Multi-Head Dynamic Graph Convolutional Network for Traffic Flow Forecasting
    Zhang, Shiyuan
    Ju, Yanni
    Kong, Weishan
    Qu, Hong
    Huang, Liwei
    MATHEMATICS, 2025, 13 (02)
  • [24] CASTNet: Convolution Augmented Graph Sampling Transformer Network for Traffic Flow Forecasting
    Chen, Zixuan
    Zhao, Shengjie
    Zeng, Jin
    Dong, Shilong
    Zu, Geyunqian
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1292 - 1297
  • [25] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    SUSTAINABILITY, 2023, 15 (09)
  • [26] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    Zhao, Tianxin
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1013 - 1023
  • [27] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [28] A Graph-Based Temporal Attention Framework for Multi-Sensor Traffic Flow Forecasting
    Zhang, Shaokun
    Guo, Yao
    Zhao, Peize
    Zheng, Chuanpan
    Chen, Xiangqun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7743 - 7758
  • [29] Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting
    Liu, Kun
    Zhu, Yifan
    Wang, Xiao
    Ji, Hongya
    Huang, Chengfei
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (09) : 136 - 149
  • [30] A Graph Convolutional Stacked Temporal Attention Neural Network for Traffic Flow Forecasting
    Feng, Yushan
    Han, Fengxia
    Zhao, Shengjie
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,