Traffic flow forecasting based on augmented multi-component recurrent graph attention network

被引:0
|
作者
Yao, Yuan [1 ,2 ]
Chen, Linlong [3 ]
Wang, Xianchen [4 ]
Wu, Xiaojun [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Mech Engn, Xian 710000, Peoples R China
[2] Henan Univ Sci & Technol, Sch Appl Engn, Luoyang, Henan, Peoples R China
[3] Guiyang Inst Humanities & Technol, Sch Big Data & Informat Engn, Guiyang, Peoples R China
[4] Shenzhen Polytech, Shenzhen, Peoples R China
关键词
Traffic flow forecasting; graph attention networks; augmented multi-component; spatial-temporal correlation; PREDICTION;
D O I
10.1080/19427867.2025.2450577
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial-temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial-temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Augmented Multi-Component Recurrent Graph Convolutional Network for Traffic Flow Forecasting
    Zhang, Chi
    Zhou, Hong-Yu
    Qiu, Qiang
    Jian, Zhichun
    Zhu, Daoye
    Cheng, Chengqi
    He, Liesong
    Liu, Guoping
    Wen, Xiang
    Hu, Runbo
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (02)
  • [2] Extended Multi-Component Gated Recurrent Graph Convolutional Network for Traffic Flow Prediction
    Zhao, Junhui
    Xiong, Xincheng
    Zhang, Qingmiao
    Wang, Dongming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4634 - 4644
  • [3] Multi-scale attention graph convolutional recurrent network for traffic forecasting
    Xiong, Liyan
    Hu, Zhuyi
    Yuan, Xinhua
    Ding, Weihua
    Huang, Xiaohui
    Lan, Yuanchun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 3277 - 3291
  • [4] Multi-component Spatial-temporal Graph Convolution Networks for Traffic Flow Forecasting
    Feng N.
    Guo S.-N.
    Song C.
    Zhu Q.-C.
    Wan H.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (03): : 759 - 769
  • [5] Traffic Flow Forecasting Based on Transformer with Diffusion Graph Attention Network
    Hong Zhang
    Hongyan Wang
    Linlong Chen
    Tianxin Zhao
    Sunan Kan
    International Journal of Automotive Technology, 2024, 25 : 455 - 468
  • [6] Traffic Flow Forecasting Based on Transformer with Diffusion Graph Attention Network
    Zhang, Hong
    Wang, Hongyan
    Chen, Linlong
    Zhao, Tianxin
    Kan, Sunan
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (03) : 455 - 468
  • [7] Attention-Based Multiple Graph Convolutional Recurrent Network for Traffic Forecasting
    Liu, Lu
    Cao, Yibo
    Dong, Yuhan
    SUSTAINABILITY, 2023, 15 (06)
  • [8] Graph convolutional dynamic recurrent network with attention for traffic forecasting
    Jiagao Wu
    Junxia Fu
    Hongyan Ji
    Linfeng Liu
    Applied Intelligence, 2023, 53 : 22002 - 22016
  • [9] Graph convolutional dynamic recurrent network with attention for traffic forecasting
    Wu, Jiagao
    Fu, Junxia
    Ji, Hongyan
    Liu, Linfeng
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22002 - 22016
  • [10] Multi-View Multi-Attention Graph Neural Network for Traffic Flow Forecasting
    Wu, Fei
    Zheng, Changjiang
    Zhang, Chen
    Ma, Junze
    Sun, Kai
    APPLIED SCIENCES-BASEL, 2023, 13 (02):