CSGD-YOLO: A Corn Seed Germination Status Detection Model Based on YOLOv8n

被引:3
|
作者
Sun, Wenbin [1 ,2 ,3 ]
Xu, Meihan [4 ]
Xu, Kang [1 ,2 ,3 ]
Chen, Dongquan [1 ,2 ,3 ]
Wang, Jianhua [4 ]
Yang, Ranbing [1 ,2 ,3 ]
Chen, Quanquan [4 ]
Yang, Songmei [2 ,3 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Trop Intelligent Agr Equipment, Haikou 570228, Peoples R China
[3] Hainan Univ, Mech & Elect Engn Coll, Haikou 570228, Peoples R China
[4] China Agr Univ, Sanya Inst, Sanya 572025, Peoples R China
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 01期
关键词
germination detection; object detection; corn seed; YOLO; deep learning;
D O I
10.3390/agronomy15010128
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Seed quality testing is crucial for ensuring food security and stability. To accurately detect the germination status of corn seeds during the paper medium germination test, this study proposes a corn seed germination status detection model based on YOLO v8n (CSGD-YOLO). Initially, to alleviate the complexity encountered in conventional models, a lightweight spatial pyramid pooling fast (L-SPPF) structure is engineered to enhance the representation of features. Simultaneously, a detection module dubbed Ghost_Detection, leveraging the GhostConv architecture, is devised to boost detection efficiency while simultaneously reducing parameter counts and computational overhead. Additionally, during the downsampling process of the backbone network, a downsampling module based on receptive field attention convolution (RFAConv) is designed to boost the model's focus on areas of interest. This study further proposes a new module named C2f-UIB-iAFF based on the faster implementation of cross-stage partial bottleneck with two convolutions (C2f), universal inverted bottleneck (UIB), and iterative attention feature fusion (iAFF) to replace the original C2f in YOLOv8, streamlining model complexity and augmenting the feature fusion prowess of the residual structure. Experiments conducted on the collected corn seed germination dataset show that CSGD-YOLO requires only 1.91 M parameters and 5.21 G floating-point operations (FLOPs). The detection precision(P), recall(R), mAP0.5, and mAP0.50:0.95 achieved are 89.44%, 88.82%, 92.99%, and 80.38%. Compared with the YOLO v8n, CSGD-YOLO improves performance in terms of accuracy, model size, parameter number, and floating-point operation counts by 1.39, 1.43, 1.77, and 2.95 percentage points, respectively. Therefore, CSGD-YOLO outperforms existing mainstream target detection models in detection performance and model complexity, making it suitable for detecting corn seed germination status and providing a reference for rapid germination rate detection.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Small Target Detection Algorithm for Aerial Images Based on YOLOv8n
    Qi, Xiangming
    Yan, Pingping
    Jiang, Liang
    Computer Engineering and Applications, 2024, 60 (24) : 200 - 210
  • [32] Detection algorithm of aircraft skin defects based on improved YOLOv8n
    Hao Wang
    Lanxue Fu
    Liwen Wang
    Signal, Image and Video Processing, 2024, 18 : 3877 - 3891
  • [33] Research on Seamless Fabric Defect Detection Based on Improved YOLOv8n
    Sun, Qin
    Noche, Bernd
    Xie, Zongyi
    Huang, Bingqiang
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [34] A Lightweight Method for Road Damage Detection Based on Improved YOLOv8n
    Li, Xudong
    Zhang, Yujun
    ENGINEERING LETTERS, 2025, 33 (01) : 114 - 123
  • [35] Lightweight Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Xie, Guobo
    Liang, Lihui
    Lin, Zhiyi
    Lin, Songze
    Su, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [36] Road target detection in harsh environments based on improved YOLOv8n
    Xu, Minjun
    Sun, Jiayu
    Zhang, Junpeng
    Yan, Mengxue
    Cao, Wen
    Hou, Alin
    Journal of Electronic Imaging, 2024, 33 (05)
  • [37] Performance Comparison of Optimizers for YOLOv8n Based Smoker Object Detection
    Jeong, Hyunsu
    Yoon, Yeo Chan
    Kwak, Hoyoung
    Gil, Joon-Min
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 148 - 150
  • [38] New Plum Detection in Complex Environments Based on Improved YOLOv8n
    Chen, Xiaokang
    Dong, Genggeng
    Fan, Xiangpeng
    Xu, Yan
    Zou, Xiangjun
    Zhou, Jianping
    Jiang, Hong
    AGRONOMY-BASEL, 2024, 14 (12):
  • [39] A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n
    Xie, Wu
    Feng, Feihong
    Zhang, Huimin
    SENSORS, 2024, 24 (14)
  • [40] Field cabbage detection and positioning system based on improved YOLOv8n
    Jiang, Ping
    Qi, Aolin
    Zhong, Jiao
    Luo, Yahui
    Hu, Wenwu
    Shi, Yixin
    Liu, Tianyu
    PLANT METHODS, 2024, 20 (01)