Learned Trimmed-Ridge Regression for Channel Estimation in Millimeter-Wave Massive MIMO

被引:0
|
作者
Wu, Pengxia [1 ,2 ]
Cheng, Julian [1 ]
Eldar, Yonina C. [3 ]
Cioffi, John M. [4 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC V1X 1V7, Canada
[2] Rockwell Automat Inc, Adv Technol AT, Milwaukee, WI 53204 USA
[3] Weizmann Inst Sci, Math & CS Fac, IL-7610001 Rehovot, Israel
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Channel estimation; Radio frequency; Massive MIMO; Antenna arrays; Vectors; Millimeter wave communication; Computational modeling; Massive multiple-input multiple-output (MIMO); channel estimation; sparse recovery; machine learning; deep learning; SYSTEMS; FEEDBACK; SIGNAL; ARCHITECTURE; REDUCTION; ALGORITHM; RECOVERY;
D O I
10.1109/TCOMM.2024.3440875
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Channel estimation poses significant challenges in millimeter-wave massive multiple-input multiple-output systems, especially when the base station has fewer radio-frequency chains than antennas. To address this challenge, one promising solution exploits the beamspace channel sparsity to reconstruct full-dimensional channels from incomplete measurements. This paper presents a model-based deep learning method to reconstruct sparse, as well as approximately sparse, vectors fast and accurately. To implement this method, we propose a trimmed-ridge regression that transforms the sparse-reconstruction problem into a least-squares problem regularized by a nonconvex penalty term, and then derive an iterative solution. We then unfold the iterations into a deep network that can be implemented in online applications to realize real-time computations. To this end, an unfolded trimmed-ridge regression model is constructed using a structural configuration to reduce computational complexity and a model ensemble strategy to improve accuracy. Compared with other state-of-the-art deep learning models, the proposed learning scheme achieves better accuracy and supports higher downlink sum rates.
引用
收藏
页码:1128 / 1141
页数:14
相关论文
共 50 条
  • [31] Accurate Channel Estimation for Millimeter-Wave MIMO Systems
    Cheng, Xiantao
    Tang, Chao
    Zhang, Zhongpei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (05) : 5159 - 5163
  • [32] Hierarchical Multi-Beam Search Based Channel Estimation for Millimeter-Wave Massive MIMO Systems
    Li, Hui
    Zhang, Wenjie
    Cheng, Wei
    Liang, Rui
    IEEE ACCESS, 2019, 7 : 180684 - 180699
  • [33] Examining Spatial Consistency for Millimeter-Wave Massive MIMO Channel Estimation in 5G-NR
    Robaei, Mohammadreza
    Akl, Robert
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2020, : 238 - 243
  • [34] Highly accurate millimeter wave channel estimation in massive MIMO system
    Zhang, Beibei
    Xu, Peng
    Qiao, Bo
    Wei, Ziping
    Li, Bin
    Zhao, Chenglin
    IET COMMUNICATIONS, 2023, 17 (06) : 670 - 680
  • [35] Performance Improvement for Multi-User Millimeter-Wave Massive MIMO Systems
    Fernando Carrera, Diego
    Vargas-Rosales, Cesar
    Villalpando-Hernandez, Rafaela
    Alejandro Galaviz-Aguilar, Jose
    IEEE ACCESS, 2020, 8 : 87735 - 87748
  • [36] A Deep Learning Channel Estimator for Millimeter-Wave Hybrid Massive MIMO Systems
    Liu, Hongjun
    Long, Ken
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (12) : 2103 - 2107
  • [37] Simplified Learned Approximate Message Passing Network for Beamspace Channel Estimation in mmWave Massive MIMO Systems
    Ruan, Chengyao
    Zhang, Zaichen
    Jiang, Hao
    Zhang, Hongming
    Dang, Jian
    Wu, Liang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 5142 - 5156
  • [38] Efficient Channel Estimation for Wideband Millimeter Wave Massive MIMO Systems With Beam Squint
    Song, Yuhui
    Gong, Zijun
    Chen, Yuanzhu
    Li, Cheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3421 - 3435
  • [39] Deep Learning for Compressed Sensing Based Channel Estimation in Millimeter Wave Massive MIMO
    Ma, Wenyan
    Qi, Chenhao
    Zhang, Zaichen
    Cheng, Julian
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [40] Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems
    Zhou, Xiaoping
    Liu, Haichao
    Wang, Bin
    Huang, Jifeng
    Wang, Yang
    IEEE ACCESS, 2022, 10 : 5343 - 5358