Learned Trimmed-Ridge Regression for Channel Estimation in Millimeter-Wave Massive MIMO

被引:0
|
作者
Wu, Pengxia [1 ,2 ]
Cheng, Julian [1 ]
Eldar, Yonina C. [3 ]
Cioffi, John M. [4 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC V1X 1V7, Canada
[2] Rockwell Automat Inc, Adv Technol AT, Milwaukee, WI 53204 USA
[3] Weizmann Inst Sci, Math & CS Fac, IL-7610001 Rehovot, Israel
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Channel estimation; Radio frequency; Massive MIMO; Antenna arrays; Vectors; Millimeter wave communication; Computational modeling; Massive multiple-input multiple-output (MIMO); channel estimation; sparse recovery; machine learning; deep learning; SYSTEMS; FEEDBACK; SIGNAL; ARCHITECTURE; REDUCTION; ALGORITHM; RECOVERY;
D O I
10.1109/TCOMM.2024.3440875
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Channel estimation poses significant challenges in millimeter-wave massive multiple-input multiple-output systems, especially when the base station has fewer radio-frequency chains than antennas. To address this challenge, one promising solution exploits the beamspace channel sparsity to reconstruct full-dimensional channels from incomplete measurements. This paper presents a model-based deep learning method to reconstruct sparse, as well as approximately sparse, vectors fast and accurately. To implement this method, we propose a trimmed-ridge regression that transforms the sparse-reconstruction problem into a least-squares problem regularized by a nonconvex penalty term, and then derive an iterative solution. We then unfold the iterations into a deep network that can be implemented in online applications to realize real-time computations. To this end, an unfolded trimmed-ridge regression model is constructed using a structural configuration to reduce computational complexity and a model ensemble strategy to improve accuracy. Compared with other state-of-the-art deep learning models, the proposed learning scheme achieves better accuracy and supports higher downlink sum rates.
引用
收藏
页码:1128 / 1141
页数:14
相关论文
共 50 条
  • [21] Model-Driven Federated Learning for Channel Estimation in Millimeter-Wave Massive MIMO Systems
    Yi, Qin
    Yang, Ping
    Liu, Zilong
    Huang, Yiqian
    Zammit, Saviour
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [22] Channel Estimation Based on Improved Compressive Sampling Matching Tracking for Millimeter-wave Massive MIMO
    Liao, Yong
    Zhao, Lei
    Li, Haowen
    Wang, Fan
    Sun, Guodong
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 548 - 553
  • [23] Hybrid Channel Estimation for UPA-Assisted Millimeter-Wave Massive MIMO IoT Systems
    Wu, Xianda
    Yang, Xi
    Ma, Shaodan
    Zhou, Binggui
    Yang, Guanghua
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (04): : 2829 - 2842
  • [24] Beamspace Channel Estimation Based on Block Support Detection for Millimeter-wave Massive MIMO Systems
    Long, Xudong
    Song, Kaipeng
    Luo, Yi
    Liu, Yang
    Ma, Junjie
    Qiu, Tianshuang
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [25] Device Activity Detection and Channel Estimation for Millimeter-Wave Massive MIMO
    Li, Yinchuan
    Zhan, Yuancheng
    Zheng, Le
    Wang, Xiaodong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (02) : 1062 - 1074
  • [26] A FAST CHANNEL ESTIMATION APPROACH FOR MILLIMETER-WAVE MASSIVE MIMO SYSTEMS
    Wang, Yue
    Tian, Zhi
    Feng, Shulan
    Zhang, Philipp
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 1413 - 1417
  • [27] Angle Domain Channel Estimation in Hybrid Millimeter Wave Massive MIMO Systems
    Fan, Dian
    Gao, Feifei
    Liu, Yuanwei
    Deng, Yansha
    Wang, Gongpu
    Zhong, Zhangdui
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (12) : 8165 - 8179
  • [28] Over-sampled Beamspace Channel Estimation for Millimeter Wave Massive MIMO
    Ma, Wenyan
    Qi, Chenhao
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [29] Sub-Array-Based Millimeter Wave Massive MIMO Channel Estimation
    Zhu, Xuan
    Liu, Yang
    Wang, Cheng-Xiang
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (09) : 1608 - 1612
  • [30] Meta-transfer Learning for Massive MIMO Channel Estimation for Millimeter-Wave Outdoor Vehicular Environments
    Tolba, Bassant
    Abd El-Malek, Ahmed H.
    Abo-Zahhad, Mohammed
    Elsabrouty, Maha
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,