Valorizing tail gas for superior hydrocarbon output in CO2-based Fischer-Tropsch synthesis

被引:0
|
作者
Chen, Jingyu [1 ,2 ]
Zhang, Leiyu [3 ]
Park, Hae-Gu [2 ]
Min, Ji-Eun [2 ]
Min, Hyung-Ki [2 ]
Kim, Jeong-Rang [2 ]
Zhang, Chundong [3 ]
Jun, Ki-Won [2 ]
Kim, Seok Ki [4 ,5 ]
机构
[1] Korea Univ Sci & Technol UST, Adv Mat & Chem Engn, Yuseong, Daejeon 34113, South Korea
[2] Carbon Resources Inst, Korea Res Inst Chem Technol KRICT, Hydrogen & C1 Gas Res Ctr, Daejeon 34114, South Korea
[3] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[4] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea
[5] Ajou Univ, Dept Chem Engn, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
CO; 2; hydrogenation; Tandem reactor; Fischer-Tropsch synthesis; Aromatics; Liquid fuel; CO2; HYDROGENATION; HETEROGENEOUS CATALYSTS; OLEFIN OLIGOMERIZATION; LIGHT-HYDROCARBONS; BTEX AROMATICS; HZSM-5; CONVERSION; FUELS; TRANSFORMATION; DEACTIVATION;
D O I
10.1016/j.cej.2024.158531
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 conversion to liquid fuels requires efficient processes that offer both high selectivity and product flexibility. Here, we demonstrate a two-stage reaction system that combines CO2 hydrogenation over KFeZn catalyst with hydrocarbon oligomerization using HZSM-5 zeolite. The system's product distribution can be precisely controlled through reaction conditions in the secondary reactor. Operating at 300 degrees C and 1 bar produces aromatic-rich liquid hydrocarbons with 31.7 % selectivity, while at 250 degrees C, the process yields gasoline-range products at 10 bar or jet fuel-range hydrocarbons at 20 bar. The system maintains stability for 120 h with approximately 72 % C5+ selectivity under optimal conditions (250 degrees C, 20 bar). The zeolite catalyst shows effective regeneration capability, and the produced hydrocarbons feature extensive branching, suggesting improved octane ratings. Model gas experiments demonstrate that temperature significantly influences hydrocarbon reactivity, with the tandem setup particularly promoting hetero-oligomerization of 1-butene. Process analysis reveals enhanced energy efficiency and economic viability compared to single-reactor systems, while maintaining the advantage of tunable product composition.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts
    Liu, Renjie
    Ma, Zhiqiang
    Sears, Jeffrey D.
    Juneau, Mitchell
    Neidig, Michael L.
    Porosoff, Marc D.
    JOURNAL OF CO2 UTILIZATION, 2020, 41
  • [22] Fischer-Tropsch synthesis and water gas shift kinetics for a precipitated iron catalyst
    Ma, Wenping
    Jacobs, Gary
    Sparks, Dennis E.
    Klettlinger, Jennifer L. S.
    Yen, Chia H.
    Davis, Burtron H.
    CATALYSIS TODAY, 2016, 275 : 49 - 58
  • [23] Reaction of ethylene over a typical Fischer-Tropsch synthesis Co/TiO2 catalyst
    Zhang, Yusheng
    Tshwaku, Mgcini
    Yao, Yali
    Chang, Jianli
    Lu, Xiaojun
    Liu, Xinying
    Hildebrandt, Diane
    ENGINEERING REPORTS, 2020, 2 (09)
  • [24] Researching Fe Catalyst Suitable for CO2-Containing SyngaS for Fischer-Tropsch Synthesis
    Ning, Wensheng
    Koizumi, Naoto
    Yamada, Muneyoshi
    ENERGY & FUELS, 2009, 23 (09) : 4696 - 4700
  • [25] Preparation of Synthesis Gas from CO2 for Fischer-Tropsch Synthesis-Comparison of Alternative Process Configurations
    Hannula, Ilkka
    Kaisalo, Noora
    Simell, Pekka
    C-JOURNAL OF CARBON RESEARCH, 2020, 6 (03):
  • [26] CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts
    Visconti, Carlo Giorgio
    Martinelli, Michela
    Falbo, Leonardo
    Fratalocchi, Laura
    Lietti, Luca
    CATALYSIS TODAY, 2016, 277 : 161 - 170
  • [27] Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas
    Visconti, Carlo Giorgio
    Lietti, Luca
    Tronconi, Enrico
    Forzatti, Pio
    Zennaro, Roberto
    Finocchio, Elisabetta
    APPLIED CATALYSIS A-GENERAL, 2009, 355 (1-2) : 61 - 68
  • [28] Key Role of CO Coverage for Chain Growth in Co-Based Fischer-Tropsch Synthesis
    Rommens, Konstantijn T.
    Gunasooriya, G. T. Kasun Kalhara
    Saeys, Mark
    ACS CATALYSIS, 2024, 14 (09) : 6696 - 6709
  • [29] Conversion of CO2 over a Co-Based Fischer-Tropsch Catalyst
    Chakrabarti, Debanjan
    de Klerk, Arno
    Prasad, Vinay
    Gnanamani, Muthu Kumaran
    Shafer, Wilson D.
    Jacobs, Gary
    Sparks, Dennis E.
    Davis, Burtron H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (04) : 1189 - 1196
  • [30] CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts
    Zhang, YQ
    Jacobs, G
    Sparks, DE
    Dry, ME
    Davis, BH
    CATALYSIS TODAY, 2002, 71 (3-4) : 411 - 418