Differential theory of zero-dimensional schemes

被引:0
作者
Kreuzer, Martin [1 ]
Linh, Tran N. K. [2 ]
Long, Le N. [1 ,2 ]
机构
[1] Univ Passau, Fac Informat & Math, D-94030 Passau, Germany
[2] Hue Univ, Univ Educ, Dept Math, 34 Loi, Hue, Vietnam
关键词
Kahler differential module; Zero-dimensional scheme; Regularity index; Hilbert function; Curvilinear scheme; Fat point scheme; POINTS;
D O I
10.1016/j.jpaa.2024.107815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To study a 0-dimensional scheme X in P n over a perfect field K, we use the module of Kahler differentials Omega(1)(R/K) of its homogeneous coordinate ring R and its exterior powers, the higher modules of Kahler differentials Omega(m)(R/K). One of our main results is a characterization of weakly curvilinear schemes X by the Hilbert polynomials of the modules Omega(m)(R/K) which allows us to check this property algorithmically without computing the primary decomposition of the vanishing ideal of X. Further main achievements are precise formulas for the Hilbert functions and Hilbert polynomials of the modules Omega(m)(R/K) for a fat point scheme X which extend and settle previous partial results and conjectures. Underlying these results is a novel method: we first embed the homogeneous coordinate ring R into its truncated integral closure (R) over tilde . Then we use the corresponding map from the module of Kahler differentials Omega(1)(R/K) to Omega(1)(R/K) to find a formula for the Hilbert polynomial HP(Omega(1)(R/K))and a sharp bound for the regularity index ri(Omega(1)(R/K)). Next we extend this to formulas for the Hilbert polynomials HP(Omega(m)(R/K)) and bounds for the regularity indices of the higher modules of Kahler differentials. As a further application, we characterize uniformity conditions on X using the Hilbert functions of the Kahler differential modules of X and its subschemes. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org /licenses/by-nc-nd/4.0/).
引用
收藏
页数:31
相关论文
共 15 条
  • [1] Bourbaki N., 1989, Commutative Algebra
  • [2] Kahler differentials for points in Pn
    de Dominicis, G
    Kreuzer, M
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 141 (02) : 153 - 173
  • [3] Eisenbud D., 1992, J. Algebraic Geom, V1, P15
  • [4] THE IDEAL OF FORMS VANISHING AT A FINITE-SET OF POINTS IN PN
    GERAMITA, AV
    MAROSCIA, P
    [J]. JOURNAL OF ALGEBRA, 1984, 90 (02) : 528 - 555
  • [5] ON THE CANONICAL MODULE OF A 0-DIMENSIONAL SCHEME
    KREUZER, M
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (02): : 357 - 379
  • [6] KREUZER M, 2005, COMPUTATIONAL COMMUT, V2
  • [7] Kreuzer M., 2016, Computational Linear and Commutative Algebra
  • [8] Kreuzer M., 2000, COMPUTATIONAL COMMUT, V1
  • [9] Hilbert Polynomials of Kahler Differential Modules for Fat Point Schemes
    Kreuzer, Martin
    Linh, Tran N. K.
    Long, Le Ngoc
    [J]. ACTA MATHEMATICA VIETNAMICA, 2021, 46 (03) : 441 - 455
  • [10] On the Cayley-Bacharach Property
    Kreuzer, Martin
    Le Ngoc Long
    Robbiano, Lorenzo
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 328 - 354