Prediction of fatigue crack propagation lives based on machine learning and data-driven approach

被引:5
|
作者
Sun, Li [1 ]
Huang, Xiaoping [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
关键词
Machine learning; Data-driven; FCP test; Reduced scale model; FCP life prediction; RESIDUAL-STRESSES; GROWTH; LIFE; BEHAVIOR; DEFECTS; FAILURE; CLOSURE; MODEL; RATIO;
D O I
10.1016/j.joes.2022.06.041
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Numerous influence factors will lead to the inaccurate prediction of fatigue crack propagation (FCP) life of the metal structure based on the existing FCP model, while the prediction method based on machine learning (ML) and data-driven approach can provide a new idea for accurately predicting the FCP life of the metal structure. In response to the inconvenience of the online prediction method and the inaccuracy of the offline prediction method, an improved offline prediction method based on data feedback is presented in this paper. FCP tests of reduced scale models of balcony opening corners in a cruise ship are conducted to obtain experimental data with respect to the a - N curves. The crack length corresponding to the cycle is trained using a support vector regression (SVR) and back propagation neural network (BP NN) algorithms. FCP prediction lives of test specimens are performed according to the online, offline, and improved offline prediction methods. Effects of the number of feedback data, the sequence length (SL) in the input set, and the cycle interval on prediction accuracy are discussed. The generalization ability of the proposed method is validated by comparing the prediction results with the experimental data in the literature. The larger the number of feedback data, the higher the prediction accuracy. The results show that 1/5 and 1/2 feedback data are needed in the SVR and BP NN algorithm with SL is 5, respectively. Furthermore, the SVR algorithm and SL = 5 are recommended for FCP life prediction using the improved offline prediction method.
引用
收藏
页码:592 / 604
页数:13
相关论文
共 50 条
  • [31] A data-driven machine learning approach for yaw control applications of wind farms
    Santoni, Christian
    Zhang, Zexia
    Sotiropoulos, Fotis
    Khosronejad, Ali
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (05)
  • [32] A data-driven approach for the prediction of coal seam gas content using machine learning techniques
    Akdas, Satuk Bugra
    Fisne, Abdullah
    APPLIED ENERGY, 2023, 347
  • [33] Personalized Tourist Recommender System: A Data-Driven and Machine-Learning Approach
    Shrestha, Deepanjal
    Tan, Wenan
    Shrestha, Deepmala
    Rajkarnikar, Neesha
    Jeong, Seung-Ryul
    COMPUTATION, 2024, 12 (03)
  • [34] Clustering suicides: A data-driven, exploratory machine learning approach
    Ludwig, Birgit
    Koenig, Daniel
    Kapusta, Nestor D.
    Blueml, Victor
    Dorffner, Georg
    Vyssoki, Benjamin
    EUROPEAN PSYCHIATRY, 2019, 62 : 15 - 19
  • [35] A Review on Data-Driven Quality Prediction in the Production Process with Machine Learning for Industry 4.0
    Md, Abdul Quadir
    Jha, Keshav
    Haneef, Sabireen
    Sivaraman, Arun Kumar
    Tee, Kong Fah
    PROCESSES, 2022, 10 (10)
  • [36] A data-driven approach for pipe deformation prediction based on soil properties and weather conditions
    Shi, Fang
    Peng, Xiang
    Liu, Zheng
    Li, Eric
    Hu, Yafei
    SUSTAINABLE CITIES AND SOCIETY, 2020, 55
  • [37] Efficient Data-Driven Machine Learning Models for Water Quality Prediction
    Dritsas, Elias
    Trigka, Maria
    COMPUTATION, 2023, 11 (02)
  • [38] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [39] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)
  • [40] Data-driven decision making based on evidential reasoning approach and machine learning algorithms
    Fu, Chao
    Xu, Che
    Xue, Min
    Liu, Weiyong
    Yang, Shanlin
    APPLIED SOFT COMPUTING, 2021, 110