Nanocomposite hydrogels optimize the microenvironment by exterior/interior crosstalk for reprogramming osteoporotic homeostasis in bone defect healing

被引:1
作者
Chen, Dengke [1 ,2 ]
Yang, Yuying [1 ,2 ,5 ]
Li, Beibei [1 ,2 ]
Yao, Yingjuan [1 ,2 ]
Xu, Junyi [1 ,2 ]
Liu, Rongyan [1 ,2 ]
Peng, Jiao [1 ,2 ]
Chang, Zhuangpeng [1 ,2 ]
Zhao, Rui [1 ,2 ]
Hou, Ruigang [1 ,2 ]
Lee, Min [4 ]
Xu, Xianghui [3 ]
Zhang, Xiao [1 ,2 ]
机构
[1] Shanxi Med Univ, Sch Pharm, Taiyuan 030001, Shanxi, Peoples R China
[2] Shanxi Med Univ, Clin Med Coll 2, Taiyuan 030001, Shanxi, Peoples R China
[3] Hunan Univ, Coll Biol, Dept Pharm, Changsha 410082, Hunan, Peoples R China
[4] Univ Calif Los Angeles, Div Oral & Syst Hlth Sci, Los Angeles, CA 90095 USA
[5] Zhejiang Univ, Sch Pharm, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Supramolecular nanocomposite hydrogels; Mild hyperthermia; Accelerated acid neutralization; Osteoclast/osteoblast balance; Osteoporotic bone regeneration; DELIVERY; PROMOTE;
D O I
10.1016/j.jconrel.2025.02.048
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Discovering new tactics for healing bone defects becomes a worldwide challenge in osteoporosis patients. The disordered acidic microenvironment plays a pivotal role in driving the imbalance of bone homeostasis regulated by osteoblasts and osteoclasts. However, the scarcity of hydrogel materials developed to optimize local bone microenvironment has made osteoporotic defect healing more challenging. Herein, we present innovative nanocomposite hydrogels with precisely engineered microarchitectures designed to optimize the acidic micro-environment by facilitating crosstalk between exterior and interior spaces, aimed at enhancing the reconstruction of osteoporotic bone defects. The chlorogenic acid grafted chitosan as double-sided crosslinkers is specially designed to not only combine with acid-reversible Laponite (R) nanosheet via interfacial interactions but also integrate with gold nanorod (a typical photothermal agent) through catechol-Au bond. The supramolecular construction of nanocomposite hydrogels holds promise for achieving a highly continuous and homogeneous pore network microarchitecture. As expected, hydrogels display outstanding spatiotemporal local mild hyperthermia, which accelerates the neutralization reaction between OH- ions released from Laponite (R) and hydrogen ions (pH similar to 4.0). The optimized microenvironment restores osteoclast/osteoblast homeostasis, resulting in the promotion of osteoblastogenesis and inhibition of osteoclastogenesis, thereby facilitating the healing of osteoporotic bone defects. This work is hoped to design versatile hydrogels for optimizing the microenvironment, displaying promising integrative substitute materials for clinically effective treatment of osteoporotic bone defects.
引用
收藏
页码:976 / 993
页数:18
相关论文
共 68 条
  • [11] Petite H., Viateau V., Bensaid W., Meunier A., de Pollak C., Bourguignon M., Oudina K., Sedel L., Guillemin G., Tissue-engineered bone regeneration, Nat. Biotechnol., 18, 9, pp. 959-963, (2000)
  • [12] Zhang X., Fan J., Lee C.S., Kim S., Chen C., Aghaloo T., Lee M., Apatite-binding nanoparticulate agonist of hedgehog signaling for bone repair, Adv. Funct. Mater., 30, 12, (2020)
  • [13] Zhang X., Fan J., Chen C., Aghaloo T., Lee M., Co-delivery of simvastatin and demineralized bone matrix hierarchically from nanosheet-based supramolecular hydrogels for osteogenesis, J. Mater. Chem. B, 9, 37, pp. 7741-7750, (2021)
  • [14] Wu X., Yan M., Shen J., Xiang Y., Jian K., Pan X., Yuan D., Shi J., Enhancing calvarial defects repair with PDGF-BB mimetic peptide hydrogels, J. Control. Release, 370, pp. 277-286, (2024)
  • [15] Yang Y.Y., Zheng Y., Liu J.J., Chang Z.P., Wang Y.H., Shao Y.Y., Hou R.G., Zhang X., Natural chlorogenic acid planted nanohybrids with steerable hyperthermia for osteosarcoma suppression and bone regeneration, Adv. Healthc. Mater., 12, 23, (2023)
  • [16] Zhang X., Fan J., Lee C.S., Kim S., Chen C., Lee M., Supramolecular hydrogels based on nanoclay and guanidine-rich chitosan: injectable and moldable osteoinductive carriers, ACS Appl. Mater. Interfaces, 12, 14, pp. 16088-16096, (2020)
  • [17] Hou M., Deng Y., Lv N., Wu Y., Zhu Y., Zhang Y., Liu Y., Xia X., Yu C., Yu J., He F., Xu Y., Zhu X., Cyclic amplification of remodeling bone regeneration process via cerium-energized spinning hydrogel biomembrane for rescuing osteoporotic bone defects, Chem. Eng. J., 492, (2024)
  • [18] Zhang G., Kang Y., Dong J., Shi D., Xiang Y., Gao H., Lin Z., Wei X., Ding R., Fan B., Zhang H., Zhu T., Wang L., Yan X., Fluffy hybrid nanoadjuvants for reversing the imbalance of osteoclastic and osteogenic niches in osteoporosis, Bioact. Mater., 39, pp. 354-374, (2024)
  • [19] Yang C., Zhu K., Cheng M., Yuan X., Wang S., Zhang L., Zhang X., Wang Q., Graphene oxide-decorated microporous sulfonated polyetheretherketone for guiding osteoporotic bone regeneration, J. Control. Release, 374, pp. 15-27, (2024)
  • [20] Hu W., Chen Y., Dou C., Dong S., Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis, Ann. Rheum. Dis., 80, 4, pp. 413-422, (2021)