LANDSLIDE DETECTION IN 3D POINT CLOUDS WITH DEEP SIAMESE CONVOLUTIONAL NETWORK

被引:0
|
作者
de Gelis, Iris [1 ,2 ]
Bernard, Thomas [3 ]
Lague, Dimitri [3 ]
Corpetti, Thomas [4 ]
Lefevre, Sebastien [2 ]
机构
[1] Magellium, F-31000 Toulouse, France
[2] Univ Bretagne Sud, IRISA UMR 6074, F-56000 Vannes, France
[3] Univ Rennes, Geosci Rennes, CNRS, UMR 6118, F-35000 Rennes, France
[4] CNRS, LETG UMR 6554, F-35000 Rennes, France
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
Landslide detection; 3D point clouds; deep learning;
D O I
10.1109/IGARSS53475.2024.10641348
中图分类号
学科分类号
摘要
Generally caused by extreme events, landslides cause severe landscape modifications and may endanger local population. It is important to be able to map them in order to better understand landscape evolution. 3D LiDAR point clouds (PCs) are a relevant choice compared to 2D imagery to directly sense ground shape modification under vegetated areas. Most of the studies propose to rely on rasterization of PCs, or multistep semi-automatic process with tedious manual results refinement in the 3D PCs. In this study, we aim at experimenting a deep learning method to directly extract landslide sources and deposits from raw 3D PCs. To this end, we train an Encoder Fusion SiamKPConv network, designed for 3D PCs change detection, for the specific task of landslides identification in PCs acquired before and after Kaikoura earthquake (New-Zealand). The experimental results (93.87% of accuracy) show the relevance of this model.
引用
收藏
页码:4574 / 4577
页数:4
相关论文
共 50 条
  • [1] CLIFF CHANGE DETECTION USING SIAMESE KPCONV DEEP NETWORK ON 3D POINT CLOUDS
    de Gelis, I
    Bessin, Z.
    Letortu, P.
    Jaud, M.
    Delacourt, C.
    Costa, S.
    Maquaire, O.
    Davidson, R.
    Corpetti, T.
    Lefevre, S.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 649 - 656
  • [2] Point Siamese Network for Person Tracking Using 3D Point Clouds
    Cui, Yubo
    Fang, Zheng
    Zhou, Sifan
    SENSORS, 2020, 20 (01)
  • [3] PointConv: Deep Convolutional Networks on 3D Point Clouds
    Wu, Wenxuan
    Qi, Zhongang
    Li Fuxin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9613 - 9622
  • [4] Convolutional neural network for 3D point clouds matching
    Voronin, Sergei
    Makovetskii, Artyom
    Voronin, Aleksei
    Zhernov, Dmitrii
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIV, 2021, 11842
  • [5] 3D Siamese Transformer Network for Single Object Tracking on Point Clouds
    Hui, Le
    Wang, Lingpeng
    Tang, Linghua
    Lan, Kaihao
    Xie, Jin
    Yang, Jian
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 293 - 310
  • [6] Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning
    de Gelis, Iris
    Lefevre, Sebastien
    Corpetti, Thomas
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 197 : 274 - 291
  • [7] A Registration Method for 3D Point Clouds with Convolutional Neural Network
    Ai, Shangyou
    Jia, Lei
    Zhuang, Chungang
    Ding, Han
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2017, PT III, 2017, 10464 : 377 - 387
  • [8] VoxAtnNet: A 3D Point Clouds Convolutional Neural Network for Generalizable Face Presentation Attack Detection
    Ramachandra, Raghavendra
    Vetrekar, Narayan
    Venkatesh, Sushma
    Nageshker, Savita
    Singh, Jag Mohan
    Gad, R. S.
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,
  • [9] Deep Hough Voting for 3D Object Detection in Point Clouds
    Qi, Charles R.
    Litany, Or
    He, Kaiming
    Guibas, Leonidas J.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9276 - 9285
  • [10] PointNGCNN: Deep convolutional networks on 3D point clouds with neighborhood graph filters
    Lu, Qiang
    Chen, Chao
    Xie, Wenjun
    Luo, Yuetong
    COMPUTERS & GRAPHICS-UK, 2020, 86 (86): : 42 - 51