A hybrid deep learning model for UWB radar-based human activity recognition

被引:1
|
作者
Khan, Irfanullah [1 ,2 ]
Guerrieri, Antonio [2 ]
Serra, Edoardo [3 ]
Spezzano, Giandomenico [2 ]
机构
[1] Univ Calabria, Via P Bucci, I-87036 Arcavacata Di Rende, CS, Italy
[2] Natl Res Council Italy ICAR CNR, Inst High Performance Comp & Networking, Via P Bucci,Cubo 8-9C, I-87036 Arcavacata Di Rende, CS, Italy
[3] Boise State Univ, 1910 W Univ Dr, Boise, ID 83725 USA
关键词
Internet of Things; Smart buildings; Human activity recognition; UWB radar; Artificial intelligence; Neural networks; LSTM;
D O I
10.1016/j.iot.2024.101458
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In today's world, energy efficiency in buildings has become a top priority due to the significant energy waste caused by the operation of inefficient electrical appliances. Conventional methods of reducing energy waste cause discomfort for occupants inside buildings. One promising way to optimize energy consumption is to synchronize appliance operation with building occupants' dynamic behavior. Internet of Things (IoT) technologies, which allow for widespread data collection and execution of Machine Learning (ML) algorithms, enabled the creation of Smart Buildings (SBs). SBs can learn patterns from the inhabitant's behavior residing in, and adjust their operations in accordance with these behaviors. By doing so, these SBs could reduce energy waste, enhancing resource efficiency and consequently reduce CO2 gas emissions. Furthermore, they could improve the overall comfort of the living environment and help with sustainability initiatives. In this context, this paper proposes a novel approach that uses a hybrid deep-learning model to recognize complex human activities based on data collected from ultra-wideband (UWB) radar technology. Our approach, called Hybrid Deep Learning Model for Activity Recognition (HDL4AR), includes long-short-term memory (LSTM) and a one-dimensional convolutional neural network (1D-CNN). We deploy a real-time case study by collecting data from 22 participants involved in 10 diverse activities at the headquarters of the ICAR-CNR in the IoT Laboratory, Italy. Moreover, we conducted a comprehensive benchmark of the HDL4AR approach against various statistical techniques and other deep learning models recently introduced in the literature. Results show that our proposed approach outperformed conventional methods and achieved an impressive accuracy of 98.42%.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Ultra-Wideband Radar-Based Activity Recognition Using Deep Learning
    Noori, Farzan M.
    Uddin, Md Zia
    Torresen, Jim
    IEEE ACCESS, 2021, 9 (09) : 138132 - 138143
  • [2] Human Activity Recognition via Hybrid Deep Learning Based Model
    Khan, Imran Ullah
    Afzal, Sitara
    Lee, Jong Weon
    SENSORS, 2022, 22 (01)
  • [3] Deep Learning-Based Human Recognition Through the Wall using UWB radar
    Assawaroongsakul, Pongpol
    Khumdee, Mawin
    Phasukkit, Pattarapong
    Houngkamhang, Nongluck
    16TH INTERNATIONAL JOINT SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE PROCESSING (ISAI-NLP 2021), 2021,
  • [4] A lightweight hybrid vision transformer network for radar-based human activity recognition
    Huan, Sha
    Wang, Zhaoyue
    Wang, Xiaoqiang
    Wu, Limei
    Yang, Xiaoxuan
    Huang, Hongming
    Dai, Gan E.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] A Survey of Deep Learning-Based Human Activity Recognition in Radar
    Li, Xinyu
    He, Yuan
    Jing, Xiaojun
    REMOTE SENSING, 2019, 11 (09)
  • [6] An algorithm for UWB radar-based human detection
    Chang, SangHyun
    Mitsumoto, Naoki
    Burdick, Joel W.
    2009 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2009, : 1010 - +
  • [7] UWB radar-based human target tracking
    Chang, SangHyun
    Sharan, Rangoli
    Wolf, Michael
    Mitsumoto, Naoki
    Burdick, Joel W.
    2009 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2009, : 574 - +
  • [8] Radar-Based Human Activity Recognition Using Hyperdimensional Computing
    Yao, Yirong
    Liu, Wenbo
    Zhang, Gong
    Hu, Wen
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (03) : 1605 - 1619
  • [9] Radar-Based Whitening-Aided Human Activity Recognition
    Sadeghi-Adl, Zahra
    Ahmad, Fauzia
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [10] On the Generalization and Reliability of Single Radar-Based Human Activity Recognition
    Gorji, Ali
    Khalid, Habib-Ur-Rehman
    Bourdoux, Andre
    Sahli, Hichem
    IEEE ACCESS, 2021, 9 (85334-85349) : 85334 - 85349