Joint Classification of Hyperspectral and LiDAR Data Based on Mamba

被引:4
|
作者
Liao, Diling [1 ]
Wang, Qingsong [1 ]
Lai, Tao [1 ]
Huang, Haifeng [1 ]
机构
[1] Sun Yat sen Univ, Sch Elect & Commun Engn, Shenzhen 518000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Laser radar; Transformers; Data mining; Land surface; Soft sensors; Hyperspectral imaging; Hyperspectral images (HSIs); joint classification; light detection and ranging (LiDAR); Mamba; multimodal; NETWORK;
D O I
10.1109/TGRS.2024.3459709
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the increasing number of remote sensing (RS) data sources, the joint utilization of multimodal data in Earth observation tasks has become a crucial research topic. As a typical representative of RS data, hyperspectral images (HSIs) provide accurate spectral information, while rich elevation information can be obtained from light detection and ranging (LiDAR) data. However, due to the significant differences in multimodal heterogeneous features, how to efficiently fuse HSI and LiDAR data remains one of the challenges faced by existing research. In addition, the edge contour information of images is not fully considered by existing methods, which can easily lead to performance bottlenecks. Thus, a joint classification network of HSI and LiDAR data based on Mamba (HLMamba) is proposed. Specifically, a gradient joint algorithm (GJA) is first performed on LiDAR data to obtain the edge contour data of the land distribution. Subsequently, a multimodal feature extraction module (MFEM) was proposed to capture the semantic features of HSI, LiDAR, and edge contour data. Then, to efficiently fuse multimodal features, a novel deep learning (DL) framework called Mamba, was introduced, and a multimodal Mamba fusion module (MMFM) was constructed. By efficiently modeling the long-distance dependencies of multimodal sequences, the MMFM can better explore the internal features of multimodal data and the interrelationships between modalities, thereby enhancing fusion performance. Finally, to validate the effectiveness of HLMamba, a series of experiments were conducted on three common HSI and LiDAR datasets. The results indicate that HLMamba has superior classification performance compared to other state-of-the-art DL methods. The source code of the proposed method will be available publicly at https://github.com/Dilingliao/HLMamba.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] IGroupSS-Mamba: Interval Group Spatial-Spectral Mamba for Hyperspectral Image Classification
    He, Yan
    Tu, Bing
    Jiang, Puzhao
    Liu, Bo
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [22] Joint Classification of Hyperspectral and LiDAR Data Using Hierarchical Random Walk and Deep CNN Architecture
    Zhao, Xudong
    Tao, Ran
    Li, Wei
    Li, Heng-Chao
    Du, Qian
    Liao, Wenzhi
    Philips, Wilfried
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7355 - 7370
  • [23] Hashing-Based Deep Metric Learning for the Classification of Hyperspectral and LiDAR Data
    Song, Weiwei
    Dai, Yong
    Gao, Zhi
    Fang, Leyuan
    Zhang, Yongjun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Classification of Hyperspectral and LiDAR Data Using Coupled CNNs
    Hang, Renlong
    Li, Zhu
    Ghamisi, Pedram
    Hong, Danfeng
    Xia, Guiyu
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4939 - 4950
  • [25] Deep EncoderDecoder Networks for Classification of Hyperspectral and LiDAR Data
    Hong, Danfeng
    Gao, Lianru
    Hang, Renlong
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] Multiple Feature-Based Superpixel-Level Decision Fusion for Hyperspectral and LiDAR Data Classification
    Jia, Sen
    Zhan, Zhangwei
    Zhang, Meng
    Xu, Meng
    Huang, Qiang
    Zhou, Jun
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1437 - 1452
  • [27] DSHFNet: Dynamic Scale Hierarchical Fusion Network Based on Multiattention for Hyperspectral Image and LiDAR Data Classification
    Feng, Yining
    Song, Liyang
    Wang, Lu
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] Joint classification of hyperspectral and LiDAR data based on inter-modality match learning
    Hang R.
    Sun Y.
    Liu Q.
    National Remote Sensing Bulletin, 2024, 28 (01) : 154 - 167
  • [29] MCFT: Multimodal Contrastive Fusion Transformer for Classification of Hyperspectral Image and LiDAR Data
    Feng, Yining
    Jin, Jiarui
    Yin, Yin
    Song, Chuanming
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [30] Lightweight Mamba Model Based on Spiral Scanning Mechanism for Hyperspectral Image Classification
    Bai, Yu
    Wu, Haoqi
    Zhang, Lili
    Guo, Hanlin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22