Tmrf: Trustworthy microstructure recognition framework with deep learning and explainable AI

被引:0
作者
Pratap, Ayush [1 ,2 ]
Hsiung, Pao-Ann [3 ]
Sardana, Neha [1 ]
机构
[1] Indian Inst Technol, Dept Met & Mat Engn, Rupnagar, India
[2] Natl Chung Cheng Univ, Grad Inst Ambient Intelligence & Smart Syst, Chiayi, Taiwan
[3] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
关键词
Microstructure; Microscopy; Phase transformation; Artificial intelligence; Trustworthy AI; Explainable AI (XAI); STEEL; CLASSIFICATION;
D O I
10.1557/s43578-025-01548-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study introduces the Trustworthy Microstructural Recognition Framework (TMRF), aimed at enhancing microstructural recognition with a focus on explainability, human-computer interaction, and accountability. Evaluating microstructural images across seven classes, the framework employed transfer learning models in two experiments: Group 1 (three distinct classes) and Group 2 (all classes). DenseNet outperformed other models, achieving 97%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} accuracy and 96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} F1 scores. Explainable AI (XAI) improved interpretability, with Occlusion and SmoothGrad providing insertion fidelity scores of 60%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for Group 1 and Group 2, respectively. Visualization highlighted the model's detailed understanding of Group 1's microstructures. Practical demonstration over the Time-Temperature-Transformation (TTT) diagram showcased Group 1's impeccable micrograph identification. The TMRF Fact Sheet, emphasizing explainability, underscores the framework's role in fostering trust in microstructural recognition systems.
引用
收藏
页码:932 / 951
页数:20
相关论文
共 62 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Bansal A., 2017, ARXIV, DOI DOI 10.48550/ARXIV.1702.06506
[3]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[4]   Adaptive characterization of microstructure dataset using a two stage machine learning approach [J].
Baskaran, Arun ;
Kane, Genevieve ;
Biggs, Krista ;
Hull, Robert ;
Lewis, Daniel .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 177 (177)
[5]   A PERSPECTIVE ON THE MORPHOLOGY OF BAINITE [J].
BRAMFITT, BL ;
SPEER, JG .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (04) :817-829
[6]   Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools [J].
Bulgarevich, Dmitry S. ;
Tsukamoto, Susumu ;
Kasuya, Tadashi ;
Demura, Masahiko ;
Watanabe, Makoto .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2019, 20 (01) :532-542
[7]   Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures [J].
Bulgarevich, Dmitry S. ;
Tsukamoto, Susumu ;
Kasuya, Tadashi ;
Demura, Masahiko ;
Watanabe, Makoto .
SCIENTIFIC REPORTS, 2018, 8
[8]   Expanding time-temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering [J].
Cantwell, Patrick R. ;
Ma, Shuailei ;
Bojarski, Stephanie A. ;
Rohrer, Gregory S. ;
Harmer, Martin P. .
ACTA MATERIALIA, 2016, 106 :78-86
[9]   Quantification of the microstructures of hypoeutectic white cast iron using mathematical morphology and an artificial neural network [J].
De Albuquerque V.H.C. ;
Tavares J.M.R.S. ;
Cortez P.C. .
International Journal of Microstructure and Materials Properties, 2010, 5 (01) :52-64
[10]   High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel [J].
DeCost, Brian L. ;
Lei, Bo ;
Francis, Toby ;
Holm, Elizabeth A. .
MICROSCOPY AND MICROANALYSIS, 2019, 25 (01) :21-29