Tmrf: Trustworthy microstructure recognition framework with deep learning and explainable AI

被引:0
作者
Pratap, Ayush [1 ,2 ]
Hsiung, Pao-Ann [3 ]
Sardana, Neha [1 ]
机构
[1] Indian Inst Technol, Dept Met & Mat Engn, Rupnagar, India
[2] Natl Chung Cheng Univ, Grad Inst Ambient Intelligence & Smart Syst, Chiayi, Taiwan
[3] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
关键词
Microstructure; Microscopy; Phase transformation; Artificial intelligence; Trustworthy AI; Explainable AI (XAI); STEEL; CLASSIFICATION;
D O I
10.1557/s43578-025-01548-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study introduces the Trustworthy Microstructural Recognition Framework (TMRF), aimed at enhancing microstructural recognition with a focus on explainability, human-computer interaction, and accountability. Evaluating microstructural images across seven classes, the framework employed transfer learning models in two experiments: Group 1 (three distinct classes) and Group 2 (all classes). DenseNet outperformed other models, achieving 97%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} accuracy and 96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} F1 scores. Explainable AI (XAI) improved interpretability, with Occlusion and SmoothGrad providing insertion fidelity scores of 60%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for Group 1 and Group 2, respectively. Visualization highlighted the model's detailed understanding of Group 1's microstructures. Practical demonstration over the Time-Temperature-Transformation (TTT) diagram showcased Group 1's impeccable micrograph identification. The TMRF Fact Sheet, emphasizing explainability, underscores the framework's role in fostering trust in microstructural recognition systems.
引用
收藏
页码:932 / 951
页数:20
相关论文
共 62 条
  • [1] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    [J]. IEEE ACCESS, 2018, 6 : 52138 - 52160
  • [2] Bansal A, 2017, Arxiv, DOI [arXiv:1702.06506, DOI 10.48550/ARXIV.1702.06506]
  • [3] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [4] Adaptive characterization of microstructure dataset using a two stage machine learning approach
    Baskaran, Arun
    Kane, Genevieve
    Biggs, Krista
    Hull, Robert
    Lewis, Daniel
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 177 (177)
  • [5] A PERSPECTIVE ON THE MORPHOLOGY OF BAINITE
    BRAMFITT, BL
    SPEER, JG
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (04): : 817 - 829
  • [6] Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools
    Bulgarevich, Dmitry S.
    Tsukamoto, Susumu
    Kasuya, Tadashi
    Demura, Masahiko
    Watanabe, Makoto
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2019, 20 (01) : 532 - 542
  • [7] Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures
    Bulgarevich, Dmitry S.
    Tsukamoto, Susumu
    Kasuya, Tadashi
    Demura, Masahiko
    Watanabe, Makoto
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [8] Expanding time-temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering
    Cantwell, Patrick R.
    Ma, Shuailei
    Bojarski, Stephanie A.
    Rohrer, Gregory S.
    Harmer, Martin P.
    [J]. ACTA MATERIALIA, 2016, 106 : 78 - 86
  • [9] Quantification of the microstructures of hypoeutectic white cast iron using mathematical morphology and an artificial neural network
    De Albuquerque V.H.C.
    Tavares J.M.R.S.
    Cortez P.C.
    [J]. International Journal of Microstructure and Materials Properties, 2010, 5 (01) : 52 - 64
  • [10] High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel
    DeCost, Brian L.
    Lei, Bo
    Francis, Toby
    Holm, Elizabeth A.
    [J]. MICROSCOPY AND MICROANALYSIS, 2019, 25 (01) : 21 - 29