Zeolite Encapsulation to Enhance Interfacial Gas Availability for Photocatalytic Hydrogen Peroxide Production

被引:0
作者
Cao, Bei [1 ,2 ,3 ]
Liu, Yifeng [5 ]
Zhao, Yue [1 ,2 ]
Qu, Jiangshan [6 ]
Zhou, Qin [1 ,2 ,3 ]
Xiao, Fengshou [4 ,5 ]
Li, Can [1 ,2 ,3 ]
Wang, Liang [4 ,5 ]
Li, Rengui [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Zhejiang Baima Lake Lab, Hangzhou 311121, Peoples R China
[5] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Minist Educ, Hangzhou 310027, Peoples R China
[6] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Res Resources, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
zeolite; hydrogen peroxide; interfacial gas availability; photocatalysis; oxygen reduction; ADVANCED OXIDATION PROCESSES; H2O2; PRODUCTION; CATALYSTS; WATER;
D O I
10.1002/anie.202422495
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photocatalytic oxidation of water with gaseous oxygen is environmentally benign for the synthesis of hydrogen peroxide (H2O2), but it is currently constrained by the inadequate supply of gaseous oxygen at the catalyst surface in a solid-liquid-gas triple-phase reaction system. Herein, we address this challenge by employing the zeolite encapsulated catalysts that efficiently enrich gaseous oxygen and accelerate the H2O2 synthesis in aqueous conditions. We focus on the classical titania photocatalyst, encapsulating it within siliceous MFI zeolite crystals. This encapsulation results in a significant enhancement in H2O2 synthesis efficiency, achieving a yield that is ten times greater than that with unencapsulated TiO2. Mechanism study reveals that gaseous oxygen is notably concentrated within the microporous structure of the zeolite under aqueous conditions, thereby facilitating its interaction with the titania surface at the liquid-solid interface. In addition, the H2O2 product could swiftly transfer through the micropores, thereby reducing the side reaction of decomposition. This design provides an alternative pathway to address the poor gas solubility of gaseous reactants in water, and paves the way for advancements in various other photocatalytic processes.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Recent developments in photocatalytic production of hydrogen peroxide
    Fang, Xiao
    Huang, Xi
    Hu, Qiyu
    Li, Bonan
    Hu, Chunlian
    Ma, Baochun
    Ding, Yong
    CHEMICAL COMMUNICATIONS, 2024, 60 (41) : 5354 - 5368
  • [12] Progress and Opportunities in Photocatalytic, Electrocatalytic, and Photoelectrocatalytic Production of Hydrogen Peroxide Coupled with Biomass Valorization
    Zheng, Yanmei
    Zhang, Yinghua
    Liang, Xiaoli
    Ouyang, Jianghong
    Guo, Xinli
    Chen, Zupeng
    CHEMSUSCHEM, 2024, 17 (19)
  • [13] Organic Molecule Bifunctionalized Polymeric Carbon Nitride for Enhanced Photocatalytic Hydrogen Peroxide Production
    Ba, Guiming
    Hu, Huilin
    Chen, Xin
    Hu, Shan
    Ye, Jinhua
    Wang, Defa
    CHEMSUSCHEM, 2023, 16 (24)
  • [14] Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials
    Chen, Anqi
    Jiang, Zhiwei
    Tang, Juntao
    Yu, Guipeng
    PROGRESS IN CHEMISTRY, 2024, 36 (03) : 357 - 366
  • [15] Photocatalytic Production of Hydrogen Peroxide over Modified Semiconductor Materials: A Minireview
    Haiyan Song
    Lishan Wei
    Luning Chen
    Han Zhang
    Ji Su
    Topics in Catalysis, 2020, 63 : 895 - 912
  • [16] Atomically dispersed scandium Lewis acid sites on carbon nitride for efficient photocatalytic hydrogen peroxide production
    Yao, Shuang
    Tang, Ting
    Shen, Yongli
    Yang, Fan
    An, Changhua
    SCIENCE CHINA-MATERIALS, 2023, 66 (02) : 672 - 678
  • [17] Enhanced photocatalytic hydrogen peroxide production at a solid-liquid-air interface via microenvironment engineering
    Chen, Lei
    Li, Shan
    Yang, Zhi
    Chen, Cheng
    Chu, Chiheng
    Chen, Baoliang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 305
  • [18] Two-phase reaction system for efficient photocatalytic production of hydrogen peroxide
    Zhao, Yifan
    Kondo, Yoshifumi
    Kuwahara, Yasutaka
    Mori, Kohsuke
    Yamashita, Hiromi
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 351
  • [19] Pyrene-Based Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production
    Sun, Jiamin
    Jena, Himanshu Sekhar
    Krishnaraj, Chidharth
    Rawat, Kuber Singh
    Abednatanzi, Sara
    Chakraborty, Jeet
    Laemont, Andreas
    Liu, Wanlu
    Chen, Hui
    Liu, Ying-Ya
    Leus, Karen
    Vrielinck, Henk
    Van Speybroeck, Veronique
    Van Der Voort, Pascal
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (19)
  • [20] A β-cyclodextrin Modified Graphitic Carbon Nitride with Au Co-Catalyst for Efficient Photocatalytic Hydrogen Peroxide Production
    Zuo, Guifu
    Zhang, Yuqian
    Liu, Shanshan
    Guo, Zhaoliang
    Zhao, Qiannan
    Saianand, Gopalan
    Feng, Liwei
    Li, Lijuan
    Li, Wangze
    Zhang, Ning
    Meng, Xianguang
    Roy, Vellaisamy A. L.
    NANOMATERIALS, 2020, 10 (10) : 1 - 11