Zeolite Encapsulation to Enhance Interfacial Gas Availability for Photocatalytic Hydrogen Peroxide Production

被引:0
作者
Cao, Bei [1 ,2 ,3 ]
Liu, Yifeng [5 ]
Zhao, Yue [1 ,2 ]
Qu, Jiangshan [6 ]
Zhou, Qin [1 ,2 ,3 ]
Xiao, Fengshou [4 ,5 ]
Li, Can [1 ,2 ,3 ]
Wang, Liang [4 ,5 ]
Li, Rengui [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Zhejiang Baima Lake Lab, Hangzhou 311121, Peoples R China
[5] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Minist Educ, Hangzhou 310027, Peoples R China
[6] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Res Resources, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
zeolite; hydrogen peroxide; interfacial gas availability; photocatalysis; oxygen reduction; ADVANCED OXIDATION PROCESSES; H2O2; PRODUCTION; CATALYSTS; WATER;
D O I
10.1002/anie.202422495
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photocatalytic oxidation of water with gaseous oxygen is environmentally benign for the synthesis of hydrogen peroxide (H2O2), but it is currently constrained by the inadequate supply of gaseous oxygen at the catalyst surface in a solid-liquid-gas triple-phase reaction system. Herein, we address this challenge by employing the zeolite encapsulated catalysts that efficiently enrich gaseous oxygen and accelerate the H2O2 synthesis in aqueous conditions. We focus on the classical titania photocatalyst, encapsulating it within siliceous MFI zeolite crystals. This encapsulation results in a significant enhancement in H2O2 synthesis efficiency, achieving a yield that is ten times greater than that with unencapsulated TiO2. Mechanism study reveals that gaseous oxygen is notably concentrated within the microporous structure of the zeolite under aqueous conditions, thereby facilitating its interaction with the titania surface at the liquid-solid interface. In addition, the H2O2 product could swiftly transfer through the micropores, thereby reducing the side reaction of decomposition. This design provides an alternative pathway to address the poor gas solubility of gaseous reactants in water, and paves the way for advancements in various other photocatalytic processes.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Photocatalytic Production of Hydrogen Peroxide over Modified Semiconductor Materials: A Minireview
    Song, Haiyan
    Wei, Lishan
    Chen, Luning
    Zhang, Han
    Su, Ji
    TOPICS IN CATALYSIS, 2020, 63 (9-10) : 895 - 912
  • [2] Electronic Tuning of Metal Nanoparticles for Highly Efficient Photocatalytic Hydrogen Peroxide Production
    Chu, Chiheng
    Huang, Dahong
    Zhu, Qianhong
    Stavitski, Eli
    Spies, Jacob A.
    Pan, Zhenhua
    Mao, Jing
    Xin, Huolin L.
    Schmuttenmaer, Charles A.
    Hu, Shu
    Kim, Jae-Hong
    ACS CATALYSIS, 2019, 9 (01) : 626 - 631
  • [3] Polymer semiconductors: A unique platform for photocatalytic hydrogen peroxide production
    Yu, Xiaohan
    Hu, Yongpan
    Shao, Chaochen
    Huang, Wei
    Li, Yanguang
    MATERIALS TODAY, 2023, 71 : 152 - 173
  • [4] Microenvironmental regulation of covalent organic frameworks for photocatalytic hydrogen peroxide production
    Wang, Wenjiao
    Wang, Xuepeng
    Gao, Min
    Li, Zhenzi
    Zhou, Wei
    COORDINATION CHEMISTRY REVIEWS, 2024, 506
  • [5] Production of Hydrogen Peroxide by Photocatalytic Processes
    Hou, Huilin
    Zeng, Xiangkang
    Zhang, Xiwang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (40) : 17356 - 17376
  • [6] Surface engineered carbon quantum dots for efficient photocatalytic hydrogen peroxide production
    Han, Wenyuan
    Zhang, Hao
    Li, Degang
    Qin, Wenwu
    Zhang, Xuliang
    Wang, Shaobin
    Duan, Xiaoguang
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 350
  • [7] Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production
    Gao, Tengyang
    Zhao, Degui
    Yuan, Saisai
    Zheng, Ming
    Pu, Xianjuan
    Tang, Liang
    Lei, Zhendong
    CARBON ENERGY, 2024, 6 (11)
  • [8] Trace water triggers high-efficiency photocatalytic hydrogen peroxide production
    Xu, Zaixiang
    Li, Yang
    Cao, Yongyong
    Du, Renfeng
    Bao, Zhikang
    Zhang, Shijie
    Shao, Fangjun
    Ji, Wenkai
    Yang, Jun
    Zhuang, Guilin
    Deng, Shengwei
    Wei, Zhongzhe
    Yao, Zihao
    Zhong, Xing
    Wang, Jianguo
    JOURNAL OF ENERGY CHEMISTRY, 2022, 64 : 47 - 54
  • [9] Insight into interfacial engineering for enhancing the synergistic effect of piezo-photocatalytic hydrogen peroxide production
    Sun, Xiaomei
    Lv, Kailong
    Liu, Fei
    Wang, Peng
    Zhang, Kangjin
    Zhang, Jiwen
    Chen, Peng
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [10] Oxygen vacancy induced robust interfacial electric field for efficient photocatalytic hydrogen peroxide production
    Liu, Tongyao
    Chen, Fang
    An, Yue
    Huang, Hongwei
    Liu, Jingang
    Yu, Wenying
    Li, Mingtao
    Bai, Liqi
    Zhang, Yihe
    Tian, Na
    CHEMICAL ENGINEERING JOURNAL, 2024, 479