Local quasi-isometries and tangent cones of definable germs

被引:0
作者
Nguyen, Nhan [1 ]
机构
[1] FPT Univ, Danang, Vietnam
关键词
Definable germ; tangent cone; quasi-isometry; SETS;
D O I
10.1515/advgeom-2024-0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of local quasi-isometry for metric germs and prove that two definable germs are quasi-isometric if and only if their tangent cones are bi-Lipschitz homeomorphic. Since bi-Lipschitz equivalence is a particular case of local quasi-isometric equivalence, we obtain Sampaio's tangent cone theorem as a corollary. As an application, we provide a different proof of the theorem by Fernandes-Sampaio, which states that the tangent cone of a Lipschitz normally embedded germ is also Lipschitz normally embedded.
引用
收藏
页码:437 / 448
页数:12
相关论文
共 34 条
  • [31] Quasi-Isometries Need Not Induce Homeomorphisms of Contracting Boundaries with the Gromov Product Topology
    Cashen, Christopher H.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 278 - 281
  • [32] QUASI-ISOMETRIES AND PROPER HOMOTOPY: THE QUASI-ISOMETRY INVARIANCE OF PROPER 3-REALIZABILITY OF GROUPS
    Cardenas, M.
    Lasheras, F. F.
    Quintero, A.
    Roy, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (04) : 1797 - 1804
  • [33] AN AMIR-CAMBERN THEOREM FOR QUASI-ISOMETRIES OF C0(K, X) SPACES
    Galego, Eloi Medina
    Porto da Silva, Andre Luis
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (01) : 87 - 100
  • [34] Quasi-isometries of C0(K, E) spaces which determine K for all Euclidean spaces E
    Galego, Eloi Medina
    Porto da Silva, Andre Luis
    STUDIA MATHEMATICA, 2018, 243 (03) : 233 - 242