Global convergence property with inexact line search for a new conjugate gradient method

被引:0
作者
Ben Hanachi, Sabrina [1 ]
Sellami, Badreddine [1 ]
Belloufi, Mohammed [1 ]
机构
[1] Univ Mohamed Cherif Messaadia, Dept Math & Comp Sci, Souk Ahras, Algeria
来源
INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA | 2025年 / 15卷 / 01期
关键词
Nonlinear unconstrained optimization; Conjugate gradient; Line search; Global convergence; SOLVING UNCONSTRAINED OPTIMIZATION; CONVEX COMBINATION; ALGORITHM; PRP; FR;
D O I
10.36922/ijocta.1543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To develop new conjugate gradient (CG) methods that are both theoretically robust and practically effective for solving unconstrained optimization problems, we propose novel hybrid conjugate gradient algorithms. In these algorithms, the scale parameter /3k is defined as a convex combination of /3HZ k (from Hager and Zhang's method) and /3kBA (from Al-Bayati and Al-Assady's method). In one hybrid algorithm, the parameter in the convex combination is determined to satisfy the conjugacy condition, independent of the line search.In the other algorithm, the parameter is computed to ensure that the conjugate gradient direction aligns with the Newton direction. Under certain conditions, the proposed methods guarantee a sufficient descent at each iteration and exhibit global convergence properties. Furthermore, numerical results demonstrate that the hybrid computational scheme based on the conjugacy condition is efficient and performs favorably compared to some well-known algorithms.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [21] Global Convergence Analysis of a New Nonlinear Conjugate Gradient Coefficient with Strong Wolfe Line Search
    Abdelrahman, Awad
    Mamat, Mustafa
    Rivaie, Mohd
    Omer, Osman
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [22] GLOBAL CONVERGENCE OF A MODIFIED CONJUGATE GRADIENT METHOD
    Li, Can
    Fang, Ling
    Lu, Peng
    2012 INTERNATIONAL CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (LCWAMTIP), 2012, : 78 - 81
  • [23] Using a new hybrid conjugate gradient method with descent property
    Hallal, Amina
    Belloufi, Mohammed
    Sellami, Badreddine
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (07) : 1287 - 1302
  • [24] Global convergence of the Polak-Ribiere-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems
    Wei, Zeng Xin
    Li, Guo Yin
    Qi, Li Qun
    MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 2173 - 2193
  • [25] GLOBAL CONVERGENCE OF HYBRID CONJUGATE GRADIENT METHOD AND ITS APPLICATION TO NONPARAMETRIC ESTIMATION
    Chaib, Yacine
    Mehamdia, Abd Elhamid
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2025, 8 (02): : 296 - 309
  • [26] Global convergence of conjugate gradient method
    Shi, Zhen-Jun
    Guo, Jinhua
    OPTIMIZATION, 2009, 58 (02) : 163 - 179
  • [27] Global convergence of a modified Hestenes-Stiefel nonlinear conjugate gradient method with Armijo line search
    Zhifeng Dai
    Fenghua Wen
    Numerical Algorithms, 2012, 59 : 79 - 93
  • [28] Global convergence of a modified Hestenes-Stiefel nonlinear conjugate gradient method with Armijo line search
    Dai, Zhifeng
    Wen, Fenghua
    NUMERICAL ALGORITHMS, 2012, 59 (01) : 79 - 93
  • [29] A NEW HYBRID BFGS-CG METHOD UNDER INEXACT LINE SEARCH AND ITS GLOBAL CONVERGENCE
    Dehmiry, Alireza Hosseini
    Kargarfard, Maryam
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (03): : 111 - 124
  • [30] Global convergence of a memory gradient method without line search
    Yu Z.
    Journal of Applied Mathematics and Computing, 2008, 26 (1-2) : 545 - 553