Transformer-Based Multiscale 3-D Convolutional Network for Motor Imagery Classification

被引:0
|
作者
Su, Jingyu [1 ]
An, Shan [1 ]
Wang, Guoxin [2 ,3 ]
Sun, Xinlin [1 ]
Hao, Yushi [1 ]
Li, Haoyu [1 ]
Gao, Zhongke [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou 310027, Peoples R China
[3] JD Hlth Int Inc, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Electroencephalography; Convolution; Kernel; Motors; Transformers; Three-dimensional displays; Electrodes; Convolutional neural networks; Decoding; Brain-computer interface (BCI); deep learning; electroencephalography (EEG); motor imagery (MI); TIME;
D O I
10.1109/JSEN.2025.3528009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the variability and nonstationarity of electroencephalography (EEG) signals across different recording scenarios and subjects, it is crucial to have methods with strong generalization capabilities that can effectively capture both temporal and spatial features while maintaining high accuracy. In this article, we introduce a Transformer-based multiscale 3-D-convolution network (TMCNet), a novel end-to-end deep learning model that integrates multiscale 3-D convolutional neural networks with the Transformer for enhanced feature extraction. First, the temporal convolution is applied to EEG signals to extract detailed temporal features. Then, we utilize multiscale 3-D convolutional branches to perform spatial convolution, capturing spatial information across diverse receptive fields. In the second stage, we utilize the multihead attention mechanism in the Transformer to extract more refined global features, with fully connected layers used for classification. We evaluate the proposed method on three publicly available datasets. In cases where the datasets contain information for two sessions, we conduct evaluations for both within-session and cross-session scenarios. The experimental results demonstrate that the proposed TMCNet exhibits advanced performance, showcasing strong decoding ability and robustness.
引用
收藏
页码:8621 / 8630
页数:10
相关论文
共 50 条
  • [21] Complex-Valued 3-D Convolutional Neural Network for PolSAR Image Classification
    Tan, Xiaofeng
    Li, Ming
    Zhang, Peng
    Wu, Yan
    Song, Wanying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1022 - 1026
  • [22] Multiband Convolutional Riemannian Network With Band-Wise Riemannian Triplet Loss for Motor Imagery Classification
    Shin, Jinhyo
    Chung, Wonzoo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (12) : 7230 - 7238
  • [23] 3-D Gabor Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Liao, Jianhui
    Xu, Meng
    Li, Yan
    Zhu, Jiasong
    Sun, Weiwei
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
    Wu, Hao
    Niu, Yi
    Li, Fu
    Li, Yuchen
    Fu, Boxun
    Shi, Guangming
    Dong, Minghao
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [25] Convolutional Transformer Network for Hyperspectral Image Classification
    Zhao, Zhengang
    Hu, Dan
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification
    Tan, Xiyue
    Wang, Dan
    Chen, Jiaming
    Xu, Meng
    BIOENGINEERING-BASEL, 2023, 10 (05):
  • [27] Convolutional Transformer-Based Cross Subject Model for SSVEP-Based BCI Classification
    Liu, Jiawei
    Wang, Ruimin
    Yang, Yuankui
    Zong, Yuan
    Leng, Yue
    Zheng, Wenming
    Ge, Sheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6581 - 6593
  • [28] A Novel Recognition and Classification Approach for Motor Imagery Based on Spatio-Temporal Features
    Lv, Renjie
    Chang, Wenwen
    Yan, Guanghui
    Nie, Wenchao
    Zheng, Lei
    Guo, Bin
    Sadiq, Muhammad Tariq
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 210 - 223
  • [29] Study of Spatial-Spectral Feature Extraction Frameworks With 3-D Convolutional Neural Network for Robust Hyperspectral Imagery Classification
    Praveen, Bishwas
    Menon, Vineetha
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 1717 - 1727
  • [30] Multiscale Kernel Based Residual Convolutional Neural Network for Motor Fault Diagnosis Under Nonstationary Conditions
    Liu, Ruonan
    Wang, Fei
    Yang, Boyuan
    Qin, S. Joe
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (06) : 3797 - 3806