Topology optimization for 3D printing-driven anisotropic components accounting for stress and displacement constraints

被引:0
|
作者
Chakravarthula, S. K. [1 ]
Das, D. [2 ]
Sideris, P. [1 ]
Kreiger, E. [3 ]
机构
[1] Texas A&M Univ, Zachry Dept Civil & Environm Engn, College Stn, TX 77840 USA
[2] Texas A&M Univ, Zachry Dept Civil & Environm Engn, College Stn, TX USA
[3] US Army Engn Res & Dev Ctr, Construct & Engn Res Lab, Champaign, IL USA
关键词
Topology optimization; Concrete 3d printing; Stress constraints; displacement; constraints; CONTINUUM STRUCTURES; CONSTRUCTION; CONCRETE; DESIGN; SCALE; CHALLENGES; STRENGTH; ELEMENTS; SURFACE;
D O I
10.1016/j.engstruct.2025.119656
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete 3D printing produces a layered macrostructure with different properties in three orthogonal directions, while new techniques allow printing at different orientations. Can printing with spatially variable layer-to-layer interface orientations produce lighter structures while stress and displacement limits are met? To address this question, this study first establishes the connection between experimentally measured properties of printed concrete samples, which inherently capture interlayer effects, and parameters of orthotropic elasticity and orthotropic yielding. Building upon this connection, a topology optimization framework is built that minimizes weight with respect to both the material distribution and spatially variable layer orientation, while simultaneously addressing both stress and displacement constraints. This framework is implemented via the Augmented Lagrangian approach together with the Method of Moving Asymptotes, and sensitivities are calculated using the adjoint method to reduce the computational cost. To expedite convergence without constraint violations, this study further introduces the concept of offset tolerances. Convergence is further expedited by introducing a cubic term in the displacement constraints that accelerates convergence at large constraint violations and by introducing a densityweighted change norm for the orientation angles to eliminate the effect of inconsequential orientation variations in regions of negligible density. This diverse framework enables investigation of fixed vs. variable orientation and tension-compression asymmetry vs. symmetry in achieving low weights. It further enables investigation of the relative effect of stress vs. displacement constraints in minimizing weight.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] Topology optimization and 3D printing of multimaterial magnetic actuators and displays
    Sundaram, Subramanian
    Skouras, Melina
    Kim, David S.
    van den Heuvel, Louise
    Matusik, Wojciech
    SCIENCE ADVANCES, 2019, 5 (07)
  • [12] Topology Optimization for Multipatch Fused Deposition Modeling 3D Printing
    Yu, Huangchao
    Hong, Huajie
    Cao, Su
    Ahmad, Rafiq
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [13] 3D PRINTING OF ANISOTROPIC METAMATERIALS
    Garcia, C. R.
    Correa, J.
    Espalin, D.
    Barton, J. H.
    Rumpf, R. C.
    Wicker, R.
    Gonzalez, V.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2012, 34 : 75 - 82
  • [14] Topology optimization design of continuum structures under stress and displacement constraints
    Yang, DQ
    Sui, YK
    Liu, ZX
    Sun, HC
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2000, 21 (01) : 19 - 26
  • [15] TOPOLOGY OPTIMIZATION DESIGN OF CONTINUUM STRUCTURES UNDER STRESS AND DISPLACEMENT CONSTRAINTS
    杨德庆
    隋允康
    刘正兴
    孙焕纯
    Applied Mathematics and Mechanics(English Edition), 2000, (01) : 21 - 28
  • [16] Topology optimization design of continuum structures under stress and displacement constraints
    Deqing Y.
    Yunkang S.
    Zhengxing L.
    Applied Mathematics and Mechanics, 2000, 21 (1) : 19 - 26
  • [17] Optimization of photocrosslinkable resin components and 3D printing process parameters
    Guerra, Antonio J.
    Lammel-Lindemann, Jan
    Katko, Alex
    Kleinfehn, Alex
    Rodriguez, Ciro A.
    Catalani, Luiz H.
    Becker, Matthew L.
    Ciurana, Joaquim
    Dean, David
    ACTA BIOMATERIALIA, 2019, 97 : 154 - 161
  • [18] Topology Optimization and 3D Printing: Toward a Functionally Graded Solid Insulator
    Kurimoto, Muneaki
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATING MATERIALS (ISEIM 2020), 2020, : 107 - 110
  • [19] Topology Optimization in 3D Concrete Printing to Reduce Greenhouse Gas Emissions
    Oliveira, Francisco H. A.
    Picelli, Renato
    Silva, Emilio C. N.
    Barari, Ahmad
    Romano, Roberto C. O.
    Pileggi, Rafael G.
    Tsuzuki, Marcos S. G.
    IFAC PAPERSONLINE, 2024, 58 (19): : 634 - 639
  • [20] 3D PRINTING OF CERAMICS: PROCESSES AND CONSTRAINTS
    Cesarano, Joe
    Stuecker, John
    Calvert, Paul
    ADVANCED MATERIALS & PROCESSES, 2019, 177 (07): : 28 - 31