Global well-posedness for the 2D MHD equations with only vertical velocity damping term

被引:0
作者
Long, Huan [1 ]
Ye, Suhui [1 ]
机构
[1] Chengdu Univ Technol, Sch Math Sci, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
基金
中国国家自然科学基金;
关键词
magnetohydrodynamic equations; global solutions; Diophantine condition; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMIC SYSTEM; EXISTENCE;
D O I
10.3934/math.20241725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.
引用
收藏
页码:36371 / 36384
页数:14
相关论文
共 50 条
  • [21] Global well-posedness of the 3D magneto-micropolar equations with damping
    Liu, Hui
    Sun, Chengfeng
    Meng, Fanwei
    APPLIED MATHEMATICS LETTERS, 2019, 94 (38-43) : 38 - 43
  • [22] LAGRANGIAN APPROACH TO GLOBAL WELL-POSEDNESS OF VISCOUS INCOMPRESSIBLE MHD EQUATIONS
    Liu, Caifeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2056 - 2080
  • [23] Global well-posedness of the 3D micropolar equations with partial viscosity and damping
    Liu, Shengquan
    Si, Zhenjie
    APPLIED MATHEMATICS LETTERS, 2020, 109
  • [24] Global well-posedness for 2D non-resistive compressible MHD system in periodic domain
    Wu, Jiahong
    Zhu, Yi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (07)
  • [25] Global well-posedness for the 3-D MHD equations with partial diffusion in the periodic domain
    Wenji Chen
    Zhifei Zhang
    Jianfeng Zhou
    Science China Mathematics, 2022, 65 : 309 - 318
  • [26] Global Well-Posedness of Second-Grade Fluid Equations in 2D Exterior Domain
    You, Xiaoguang
    Zang, Aibin
    ACTA APPLICANDAE MATHEMATICAE, 2022, 182 (01)
  • [27] On 3D Hall-MHD Equations with Fractional Laplacians: Global Well-Posedness
    Zhang, Huali
    Zhao, Kun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
  • [28] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [29] Global well-posedness for the 3-D MHD equations with partial diffusion in the periodic domain
    Chen, Wenji
    Zhang, Zhifei
    Zhou, Jianfeng
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (02) : 309 - 318
  • [30] Global Well-Posedness of Solutions to 2D Prandtl-Hartmann Equations in Analytic Framework
    Dong Xiaolei
    Qin Yuming
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 35 (03): : 289 - 306