Global well-posedness for the 2D MHD equations with only vertical velocity damping term

被引:0
作者
Long, Huan [1 ]
Ye, Suhui [1 ]
机构
[1] Chengdu Univ Technol, Sch Math Sci, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
基金
中国国家自然科学基金;
关键词
magnetohydrodynamic equations; global solutions; Diophantine condition; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMIC SYSTEM; EXISTENCE;
D O I
10.3934/math.20241725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.
引用
收藏
页码:36371 / 36384
页数:14
相关论文
共 50 条
  • [1] Global Well-Posedness for MHD Equations with Magnetic Diffusion and Damping Term in R2
    Feng, Weixun
    Qin, Dongdong
    Zhu, Rui
    Chen, Zhi
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
  • [2] Global well-posedness for axisymmetric MHD system with only vertical viscosity
    Jiu, Quansen
    Yu, Huan
    Zheng, Xiaoxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2954 - 2990
  • [3] Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain
    Ren, Xiaoxia
    Xiang, Zhaoyin
    Zhang, Zhifei
    NONLINEARITY, 2016, 29 (04) : 1257 - 1291
  • [4] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1865 - 1884
  • [5] Global well-posedness of 2D incompressible Oldroyd-B model with only velocity dissipation
    Chen, Yuhao
    Zhu, Yi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 376 : 606 - 632
  • [6] Global well-posedness of the 3D incompressible MHD equations with variable density
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-an
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 85 - 105
  • [7] Global well-posedness for the 2D non-resistive MHD equations in two kinds of periodic domains
    Chen, Qionglei
    Ren, Xiaoxia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [8] GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION
    Suo, Xiaoxiao
    Jiu, Quansen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4523 - 4553
  • [9] Global well-posedness of the full compressible Hall-MHD equations
    Tao, Qiang
    Zhu, Canze
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 1235 - 1254
  • [10] ON THE WELL-POSEDNESS OF THE STOCHASTIC 2D PRIMITIVE EQUATIONS
    Sun, Chengfeng
    Su, Lijuan
    Liu, Hui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1273 - 1295