The role of Guru investor in Bitcoin: Evidence from Kolmogorov-Arnold Networks

被引:0
|
作者
Shen, Dehua [1 ]
Wu, Yize [2 ]
机构
[1] Nankai Univ, Sch Finance, 38 Tongyan Rd, Tianjin 300350, Peoples R China
[2] Washington Univ St Louis, Olin Sch Business, St Louis, MO 63130 USA
基金
中国国家自然科学基金;
关键词
Twitter; Bitcoin; Guru investor; KAN; Investor sentiment; OPINION LEADERS; CROSS-SECTION; SENTIMENT; RETURNS; PREDICT; MARKET; PRICE; RECOMMENDATIONS; INEFFICIENCY; PORTFOLIO;
D O I
10.1016/j.ribaf.2025.102789
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study examines the influence of Twitter sentiment on Bitcoin price movements by distinguishing between "Gurus" (influential users) and regular users in the Bitcoin market. We analyze over 26 million Tweets collected from September 2006 to March 2023 to derive sentiment data, then employ Kolmogorov-Arnold Networks (KAN) to compare the predictive effectiveness of follower-weighted sentiment versus unweighted sentiment. Our results indicate that follower-weighted sentiment significantly enhances prediction accuracy, with Guru sentiments consistently showing stronger predictive power than regular user sentiment. These findings are robust to alternative measurement of sentiment, alternative definition of Guru investor, and subperiod analysis.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Exploring the Limitations of Kolmogorov-Arnold Networks in Classification: Insights to Software Training and Hardware Implementation
    Van Duy Trani
    Tran Xuan Hieu Le
    Thi Diem Tran
    Hoai Luan Pham
    Vu Trung Duong Le
    Tuan Hai Vu
    Van Tinh Nguyen
    Nakashima, Yasuhiko
    2024 TWELFTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS, CANDARW 2024, 2024, : 110 - 116
  • [32] Investor attention and bitcoin liquidity: Evidence from bitcoin tweets
    Choi, Hyungeun
    FINANCE RESEARCH LETTERS, 2021, 39
  • [33] A Novel Interpretable Short-Term Load Forecasting Method Based on Kolmogorov-Arnold Networks
    Jiang, Bozhen
    Wang, Yidi
    Wang, Qin
    Geng, Hua
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 1180 - 1183
  • [34] The Importance of Weather Factors in the Resilience of Airport Flight Operations Based on Kolmogorov-Arnold Networks (KANs)
    Song, Mingyang
    Wang, Jianjun
    Li, Rui
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [35] The Application of the Novel Kolmogorov-Arnold Networks for Predicting the Fundamental Period of RC Infilled Frame Structures
    Lin, Shan
    Zhao, Kaiyang
    Guo, Hongwei
    Hu, Quanke
    Cao, Xitailang
    Zheng, Hong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2025,
  • [36] Predicting Chlorophyll-a Concentrations in the World's Largest Lakes Using Kolmogorov-Arnold Networks
    Saravani, Mohammad Javad
    Noori, Roohollah
    Jun, Changhyun
    Kim, Dongkyun
    Bateni, Sayed M.
    Kianmehr, Peiman
    Woolway, Richard Iestyn
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (03) : 1801 - 1810
  • [37] MOF-KAN: Kolmogorov-Arnold Networks for Digital Discovery of Metal-Organic Frameworks
    Wu, Xiaoyu
    Song, Xianyu
    Yue, Yifei
    Zheng, Rui
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (10): : 2452 - 2459
  • [38] KOLMOGOROV-ARNOLD NEURAL NETWORKS TECHNIQUE FOR THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERIES
    Dao, M. H.
    Liu, F.
    Sidorov, D. N.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (04): : 22 - 31
  • [39] Co-design for Kolmogorov-Arnold networks to unlock the full potential of optical intelligent accelerators
    Du, Shiyin
    Hao, Ouyang
    Tao, Zilong
    Yan, Qiuquan
    Hao, Hao
    Zhang, Jun
    Tang, Yuhua
    Jiang, Tian
    OPTICS LETTERS, 2025, 50 (05) : 1695 - 1698
  • [40] Kolmogorov-Arnold-Informed neural network: A physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov-Arnold Networks
    Wang, Yizheng
    Sun, Jia
    Bai, Jinshuai
    Anitescu, Cosmin
    Eshaghi, Mohammad Sadegh
    Zhuang, Xiaoying
    Rabczuk, Timon
    Liu, Yinghua
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433