The role of Guru investor in Bitcoin: Evidence from Kolmogorov-Arnold Networks

被引:0
|
作者
Shen, Dehua [1 ]
Wu, Yize [2 ]
机构
[1] Nankai Univ, Sch Finance, 38 Tongyan Rd, Tianjin 300350, Peoples R China
[2] Washington Univ St Louis, Olin Sch Business, St Louis, MO 63130 USA
基金
中国国家自然科学基金;
关键词
Twitter; Bitcoin; Guru investor; KAN; Investor sentiment; OPINION LEADERS; CROSS-SECTION; SENTIMENT; RETURNS; PREDICT; MARKET; PRICE; RECOMMENDATIONS; INEFFICIENCY; PORTFOLIO;
D O I
10.1016/j.ribaf.2025.102789
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study examines the influence of Twitter sentiment on Bitcoin price movements by distinguishing between "Gurus" (influential users) and regular users in the Bitcoin market. We analyze over 26 million Tweets collected from September 2006 to March 2023 to derive sentiment data, then employ Kolmogorov-Arnold Networks (KAN) to compare the predictive effectiveness of follower-weighted sentiment versus unweighted sentiment. Our results indicate that follower-weighted sentiment significantly enhances prediction accuracy, with Guru sentiments consistently showing stronger predictive power than regular user sentiment. These findings are robust to alternative measurement of sentiment, alternative definition of Guru investor, and subperiod analysis.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Kolmogorov-Arnold networks in nuclear binding energy prediction
    Liu, Hao
    Lei, Jin
    Ren, Zhongzhou
    PHYSICAL REVIEW C, 2025, 111 (02)
  • [2] Kolmogorov-Arnold Networks for Semi-Supervised Impedance Inversion
    Liu, Mingming
    Bossmann, Florian
    Ma, Jianwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [3] An intrusion detection model based on Convolutional Kolmogorov-Arnold Networks
    Wang, Zhen
    Zainal, Anazida
    Siraj, Maheyzah Md
    Ghaleb, Fuad A.
    Hao, Xue
    Han, Shaoyong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [4] SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
    Reinhardt, Eric
    Ramakrishnan, Dinesh
    Gleyzer, Sergei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [5] Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks
    Kupriyanov, G.
    Isaev, I.
    Laptinskiy, K.
    Dolenko, T.
    Dolenko, S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (SUPPL3) : S475 - S482
  • [6] How Resilient Are Kolmogorov-Arnold Networks in Classification Tasks? A Robustness Investigation
    Ibrahum, Ahmed Dawod Mohammed
    Shang, Zhengyu
    Hong, Jang-Eui
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [7] FloodKAN: Integrating Kolmogorov-Arnold Networks for Efficient Flood Extent Extraction
    Wang, Cong
    Zhang, Xiaohan
    Liu, Liwei
    REMOTE SENSING, 2025, 17 (04)
  • [8] Physics-Informed Kolmogorov-Arnold Networks for Power System Dynamics
    Shuai, Hang
    Li, Fangxing
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2025, 12 : 46 - 58
  • [9] HyperKAN: Kolmogorov-Arnold Networks Make Hyperspectral Image Classifiers Smarter
    Firsov, Nikita
    Myasnikov, Evgeny
    Lobanov, Valeriy
    Khabibullin, Roman
    Kazanskiy, Nikolay
    Khonina, Svetlana
    Butt, Muhammad A.
    Nikonorov, Artem
    SENSORS, 2024, 24 (23)
  • [10] fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
    Aghaei, Alireza Afzal
    NEUROCOMPUTING, 2025, 623