Reimagining cancer tissue classification: a multi-scale framework based on multi-instance learning for whole slide image classification

被引:0
作者
Wu, Zixuan [1 ]
He, Haiyong [2 ]
Zhao, Xiushun [3 ]
Lin, Zhenghui [1 ]
Ye, Yanyan [1 ]
Guo, Jing [1 ]
Hu, Wanming [5 ]
Jiang, Xiaobing [4 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Neurosurg, Guangzhou 510630, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, Dept Neurosurg Neurooncol, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Guangdong, Peoples R China
[5] Sun Yat Sen Univ Canc Ctr, Guangdong Prov Clin Res Ctr Canc, Dept Pathol, State Key Lab Oncol South China, Guangzhou 510060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Whole slide image classification; Multiple instance learning; Multi-scale feature fusion; Similarity focal loss;
D O I
10.1007/s11517-025-03341-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In cancer pathology diagnosis, analyzing Whole Slide Images (WSI) encounters challenges like invalid data, varying tissue features at different magnifications, and numerous hard samples. Multiple Instance Learning (MIL) is a powerful tool for addressing weakly supervised classification in WSI-based pathology diagnosis. However, existing MIL frameworks cannot simultaneously tackle these issues. To address these challenges, we propose an integrated recognition framework comprising three complementary components: a preprocessing selection method, an Efficient Feature Pyramid Network (EFPN) model for multi-instance learning, and a Similarity Focal Loss. The preprocessing selection method accurately identifies and selects representative image patches, effectively reducing invalid data interference and enhancing subsequent model training efficiency. The EFPN model, inspired by pathologists' diagnostic processes, captures different tissue features in WSI images by constructing a multi-scale feature pyramid, enhancing the model's ability to recognize tumor tissue features. Additionally, the Similarity Focal Loss further improves the model's discriminative power and generalization performance by focusing on hard samples and emphasizing classification boundary information. The test accuracy for binary tumor classification on the CAMELYON16 and two private datasets reached 93.58%, 84.74%, and 99.91%, respectively, all of which outperform existing techniques.
引用
收藏
页码:2617 / 2635
页数:19
相关论文
共 52 条
[1]   Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade [J].
Berbis, M. Alvaro ;
McClintock, David S. ;
Bychkov, Andrey ;
Van der Laak, Jeroen ;
Pantanowitz, Liron ;
Lennerz, Jochen K. ;
Cheng, Jerome Y. ;
Delahunt, Brett ;
Egevad, Lars ;
Eloy, Catarina ;
Farris III, Alton B. ;
Fraggetta, Filippo ;
del Moral, Raimundo Garcia ;
Hartman, Douglas J. ;
Herrmann, Markus D. ;
Hollemans, Eva ;
Iczkowski, Kenneth A. ;
Karsan, Aly ;
Kriegsmann, Mark ;
Salama, Mohamed E. ;
Sinard, John H. ;
Tuthill, J. Mark ;
Williams, Bethany ;
Casado-Sanchez, Cesar ;
Sanchez-Turrion, Victor ;
Luna, Antonio ;
Aneiros-Fernandez, Jose ;
Shen, Jeanne .
EBIOMEDICINE, 2023, 88
[2]   DAS-MIL: Distilling Across Scales for MIL Classification of Histological WSIs [J].
Bontempo, Gianpaolo ;
Porrello, Angelo ;
Bolelli, Federico ;
Calderara, Simone ;
Ficarra, Elisa .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 :248-258
[3]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[4]  
Chen J., 2021, arXiv
[5]   Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning [J].
Chen, Richard J. ;
Chen, Chengkuan ;
Li, Yicong ;
Chen, Tiffany Y. ;
Trister, Andrew D. ;
Krishnan, Rahul G. ;
Mahmood, Faisal .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16123-16134
[6]   Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening [J].
Chikontwe, Philip ;
Luna, Miguel ;
Kang, Myeongkyun ;
Hong, Kyung Soo ;
Ahn, June Hong ;
Park, Sang Hyun .
MEDICAL IMAGE ANALYSIS, 2021, 72
[7]   Solving the multiple instance problem with axis-parallel rectangles [J].
Dietterich, TG ;
Lathrop, RH ;
LozanoPerez, T .
ARTIFICIAL INTELLIGENCE, 1997, 89 (1-2) :31-71
[8]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021, DOI [10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[9]  
Feng J, 2017, AAAI CONF ARTIF INTE, P1884
[10]   Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images [J].
Guo, Qinhao ;
Qu, Linhao ;
Zhu, Jun ;
Li, Haiming ;
Wu, Yong ;
Wang, Simin ;
Yu, Min ;
Wu, Jiangchun ;
Wen, Hao ;
Ju, Xingzhu ;
Wang, Xin ;
Bi, Rui ;
Shi, Yonghong ;
Wu, Xiaohua .
MODERN PATHOLOGY, 2023, 36 (12)