A skin lesion segmentation network with edge and body fusion

被引:9
作者
Wang, Gao [1 ]
Ma, Qisen [1 ]
Li, Yiyang [1 ]
Mao, Keming [1 ]
Xu, Lisheng [2 ,3 ]
Zhao, Yuhai [4 ]
机构
[1] Northeastern Univ, Software Coll, Shenyang, Peoples R China
[2] Northeastern Univ, Coll Med & Biol & Informat Engn, Shenyang, Peoples R China
[3] Minist Educ, Engn Res Ctr Med Imaging & Intelligent Anal, Shenyang, Peoples R China
[4] Northeastern Univ, Coll Comp Sci & Engn, Shenyang, Peoples R China
关键词
Skin lesion segmentation; Feature fusion; Multi-scale; Transformer; CNNs; MELANOMA; DIAGNOSIS; IMAGES; NET;
D O I
10.1016/j.asoc.2024.112683
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Purpose: In this paper, a novel local cross-attention Unet(LCAUnet) is proposed to enhance the completeness of representation with the fusion of edge and body features, which are often paid little attention in traditional methods. Method: First, two separate branches are set for edge and body segmentation with convolutional neural networks(CNNs) and Transformer based architectures, respectively. Then, the local cross-attention feature fusion(LCAF) module is utilized to merge feature maps of the edge and body of the same level via local cross-attention operation in the encoder stage, and the edge-body interactions can be captured hierarchically. Furthermore, the prior guided multi-scale knowledge fusion(PGMF) module is embedded for feature integration with prior guided multi-scale adaption. Result: Comprehensive experiments on publicly available datasets ISIC 2017, ISIC 2018, and PH2 demonstrate that LCAUnet outperforms most state-of-the-art methods in metrics such as 1.31% improvement in Dice. The ablation studies also verify the effectiveness of the proposed fusion techniques.
引用
收藏
页数:15
相关论文
共 68 条
[1]   Contextual Attention Network: Transformer Meets U-Net [J].
Azad, Reza ;
Heidari, Moein ;
Wu, Yuli ;
Merhof, Dorit .
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 :377-386
[2]   TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers [J].
Bai, Xuyang ;
Hu, Zeyu ;
Zhu, Xinge ;
Huang, Qingqiu ;
Chen, Yilun ;
Fu, Hangbo ;
Tai, Chiew-Lan .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1080-1089
[3]  
Bi L, 2019, I S BIOMED IMAGING, P1100, DOI [10.1109/isbi.2019.8759479, 10.1109/ISBI.2019.8759479]
[4]   Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks [J].
Bi, Lei ;
Kim, Jinman ;
Ahn, Euijoon ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) :2065-2074
[5]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[6]   Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods [J].
Celebi, M. Emre ;
Wen, Quan ;
Hwang, Sae ;
Iyatomi, Hitoshi ;
Schaefer, Gerald .
SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) :E252-E258
[7]  
Chen J., 2021, PREPRINT
[8]   ResGANet: Residual group attention network for medical image classification and segmentation [J].
Cheng, Junlong ;
Tian, Shengwei ;
Yu, Long ;
Gao, Chengrui ;
Kang, Xiaojing ;
Ma, Xiang ;
Wu, Weidong ;
Liu, Shijia ;
Lu, Hongchun .
MEDICAL IMAGE ANALYSIS, 2022, 76
[9]  
Codella N, 2019, Arxiv, DOI arXiv:1902.03368
[10]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547