Advancing life cycle assessment of bioenergy crops with global land use models

被引:0
作者
Arvesen, Anders [1 ,2 ,3 ]
Humpenoeder, Florian [4 ]
Gutierrez, Tomas Navarrete [5 ]
Gibon, Thomas [5 ]
Baustert, Paul [5 ]
Dietrich, Jan Philipp [4 ]
Stadler, Konstantin [1 ,2 ]
Iordan, Cristina-Maria [1 ,2 ,6 ]
Luderer, Gunnar [4 ]
Popp, Alexander [4 ]
Cherubini, Francesco [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Ind Ecol Programme, Trondheim, Norway
[2] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, Trondheim, Norway
[3] SINTEF Energy Res, Trondheim, Norway
[4] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany
[5] Luxembourg Inst Sci & Technol LIST, Esch Sur Alzette, Luxembourg
[6] SINTEF Ocean, Trondheim, Norway
来源
ENVIRONMENTAL RESEARCH COMMUNICATIONS | 2024年 / 6卷 / 12期
关键词
life cycle assessment (LCA); land use and land use change (LULUC); integrated assessment model (IAM); climate change mitigation; sustainability assessment; second generation bioenergy; NEGATIVE EMISSIONS; MITIGATION; METHODOLOGY; INFORMATION; STRATEGIES; VEGETATION; SCENARIOS; FRAMEWORK; IMPACTS;
D O I
10.1088/2515-7620/ad97ac
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bioenergy crops can cut greenhouse gas (GHG) emissions, yet often bring hard-to-quantify environmental impacts. We present an approach for integrating global land use modeling into life cycle assessment (LCA) to estimate effects of bioenergy crops. The approach involves methodological choices connected to time horizons, scenarios of GHG prices and socioeconomic pathways, and flexible data transfer between models. Land-use change emissions are treated as totals, avoiding uncertain separation into direct and indirect emissions. The land use model MAgPIE is used to generate scenarios up to 2070 of land use, GHG emissions, irrigation and fertilizer use with different scales of perennial grass bioenergy crop deployment. We find that land use-related CO2 emission for bioenergy range from 2 to 35 tonne TJ-1, depending on bioenergy demand, policy context, year and accounting method. GHG emissions per unit of bioenergy do not increase with bioenergy demand in presence of an emission tax. With a GHG price of 40 or 200 $ tonne-1 CO2, GHG per bioenergy remain similar if the demand is doubled. A carbon tax thus has a stronger effect on emissions than bioenergy demand. These findings suggest that even a relatively moderate GHG price (40 $ tonne-1 CO2) can prevent significant emissions, highlighting the critical role governance plays in securing the climate benefits of bioenergy. However, realizing these benefits in practice will depend on a coherent policy framework for pricing CO2 emissions from land-use change, which is currently absent. Overall, our approach addresses direct and indirect effects associated with irrigation, machinery fuel and fertilizer use as well as emissions. Thanks to a global spatial coverage and temporal dimension, it facilitates a systematic and consistent inclusion of indirect effects in a global analysis framework. Future research can build on our open-source data/software to study different regions, bioenergy products or impacts.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A review of global-local-global linkages in economic land-use/cover change models
    Hertel, Thomas W.
    West, Thales A. P.
    Boerner, Jan
    Villoria, Nelson B.
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (05)
  • [42] Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use
    Jolliet, Olivier
    Anton, Assumpcio
    Boulay, Anne-Marie
    Cherubini, Francesco
    Fantke, Peter
    Levasseur, Annie
    McKone, Thomas E.
    Michelsen, Ottar
    Mila i Canals, Llorenc
    Motoshita, Masaharu
    Pfister, Stephan
    Verones, Francesca
    Vigon, Bruce
    Frischknecht, Rolf
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2018, 23 (11) : 2189 - 2207
  • [43] Analysis of the life cycle assessment approach for the evaluation of land use related impacts on biodiversity in biofuels production
    Urban, Barbara
    Krahl, Juergen
    Munack, Axel
    Kanning, Helga
    von Haaren, Christina
    LANDBAUFORSCHUNG VOLKENRODE, 2007, 57 (04): : 419 - 427
  • [44] Land use and electricity generation: A life-cycle analysis
    Fthenakis, Vasilis
    Kim, Hyung Chul
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (6-7) : 1465 - 1474
  • [45] The life cycle assessment (LCA) of selected TV models
    Kwiecien, Klaudia
    Kania, Gabriela
    Malinowski, Mateusz
    MENDELNET 2019: PROCEEDINGS OF 26TH INTERNATIONAL PHD STUDENTS CONFERENCE, 2019, : 522 - 527
  • [46] Cradle-to-farm gate life cycle assessment in perennial energy crops
    Monti, Andrea
    Fazio, Simone
    Venturi, Gianpietro
    EUROPEAN JOURNAL OF AGRONOMY, 2009, 31 (02) : 77 - 84
  • [47] Disclosure of Product System Models in Life Cycle Assessment: Achieving Transparency and Privacy
    Kuczenski, Brandon
    JOURNAL OF INDUSTRIAL ECOLOGY, 2019, 23 (03) : 574 - 586
  • [48] Initial soil C and land-use history determine soil C sequestration under perennial bioenergy crops
    Rowe, Rebecca L.
    Keith, Aidan M.
    Elias, Dafydd
    Dondini, Marta
    Smith, Pete
    Oxley, Jonathan
    McNamara, Niall P.
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2016, 8 (06): : 1046 - 1060
  • [49] Effect of farming system and yield in the life cycle assessment of Jatropha-based bioenergy in Mali
    Almeida, Joana
    Moonen, Pieter
    Soto, Iria
    Achten, Wouter M. J.
    Muys, Bart
    ENERGY FOR SUSTAINABLE DEVELOPMENT, 2014, 23 : 258 - 265
  • [50] Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms
    Styles, David
    Gibbons, James
    Williams, Arwel Prysor
    Stichnothe, Heinz
    Chadwick, David Robert
    Healey, John Robert
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2015, 7 (05): : 1034 - 1049