Enhanced Production of Ergothioneine in Yarrowia lipolytica through Combined Metabolic and Enzyme Engineering

被引:0
|
作者
Hu, Linfeng [1 ,2 ]
Liu, Mengsu [1 ,2 ,3 ]
Chen, Qihang [1 ,2 ,3 ,4 ]
Yue, Minyu [1 ,2 ,3 ,4 ]
Zeng, Weizhu [1 ,2 ,3 ,4 ,5 ]
Zhou, Jingwen [1 ,2 ,3 ,4 ,5 ]
Zhang, Changtai [1 ,2 ,3 ,4 ]
Xu, Sha [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Engn Res Ctr, Minist Educ Food Synthet Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
[4] Jiangnan Univ, Sci Ctr Future Foods, Wuxi 214122, Jiangsu, Peoples R China
[5] Jiangnan Univ, Jiangsu Prov Engn Res Ctr Food Synthet Biotechnol, Wuxi 214122, Peoples R China
来源
ACS AGRICULTURAL SCIENCE & TECHNOLOGY | 2025年
关键词
ergothioneine; metabolicengineering; precursorenhancement; enzyme engineering; <italic>Yarrowialipolytica</italic>; ANTIOXIDANT L-ERGOTHIONEINE; BIOSYNTHESIS; MUSHROOMS; ACID;
D O I
10.1021/acsagscitech.4c00730
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Ergothioneine (EGT) is a sulfur-containing histidine derivative with antioxidant, antiaging, and antidepressant properties. It is widely used in the food, medicine, and cosmetics industries. However, both the chemical synthesis and biological extraction of EGT are constrained by high cost and low yield. In this study, EGT synthetases EGT1 and EGT2 from Trichoderma reesei were expressed in Yarrowia lipolytica using various expression vectors. Several key sites in TrEgt1 were identified by alanine scanning mutagenesis, mutated to hydrophobic amino acids, and the EGT titer of the Y786A-A492 V-TrEGT1 mutant was 2.41 times higher than that of the wild-type strain. To improve the supply of precursor amino acids, the associated network was divided into four modules, which have been systematically enhanced. Combining the above modifications resulted in an engineered strain that produced 516.3 mg/L EGT in multiwell plates. Fermentation was optimized in a 5 L bioreactor, and EGT accumulation reached 9.3 g/L after 168 h, with a production intensity of 55.35 mg/L/h, the highest reported to date. These strategies provided references for the construction of EGT-producing microorganisms.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
    A. Beopoulos
    J. Verbeke
    F. Bordes
    M. Guicherd
    M. Bressy
    A. Marty
    Jean-Marc Nicaud
    Applied Microbiology and Biotechnology, 2014, 98 : 251 - 262
  • [32] Metabolic engineering of Yarrowia lipolytica for high-level production of squalene
    Liu, Ziying
    Huang, Mingkang
    Chen, Hong
    Lu, Xiangyang
    Tian, Yun
    Hu, Pengcheng
    Zhao, Qiaoqin
    Li, Peiwang
    Li, Changzhu
    Ji, Xiaojun
    Liu, Huhu
    BIORESOURCE TECHNOLOGY, 2024, 394
  • [33] Metabolic engineering of Yarrowia lipolytica for the production and secretion of the saffron ingredient crocetin
    Zhou, Tingan
    Park, Young-Kyoung
    Fu, Jing
    Hapeta, Piotr
    Klemm, Cinzia
    Ledesma-Amaro, Rodrigo
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2025, 18 (01):
  • [34] Metabolic engineering of Yarrowia lipolytica for high-level production of scutellarin
    Zhang, Ping
    Wei, Wenping
    Shang, Yanzhe
    Ye, Bang-Ce
    BIORESOURCE TECHNOLOGY, 2023, 385
  • [35] Engineering of Yarrowia lipolytica for terpenoid production
    Arnesen, Jonathan Asmund
    Borodina, Irina
    METABOLIC ENGINEERING COMMUNICATIONS, 2022, 15
  • [36] Metabolic Engineering and Strain Mating of Yarrowia lipolytica for Sustainable Production of Prenylated Aromatic Compounds
    Liu, Jianhui
    Zhu, Yamin
    Zhang, Jin
    Sun, Lingxuan
    Sheng, Ju-Zheng
    Tan, Zaigao
    Qi, Qingsheng
    Hou, Jin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (08): : 3149 - 3159
  • [37] Engineering heterologous enzyme secretion in Yarrowia lipolytica
    Wang, Weigao
    Blenner, Mark A.
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [38] Metabolic engineering of Yarrowia lipolytica for industrial applications
    Zhu, Quinn
    Jackson, Ethel N.
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 36 : 65 - 72
  • [39] Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica
    Zhang, Xin-Kai
    Wang, Dan-Ni
    Chen, Jun
    Liu, Zhi-Jie
    Wei, Liu-Jing
    Hua, Qiang
    BIOTECHNOLOGY LETTERS, 2020, 42 (06) : 945 - 956
  • [40] Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica
    Xin-Kai Zhang
    Dan-Ni Wang
    Jun Chen
    Zhi-Jie Liu
    Liu-Jing Wei
    Qiang Hua
    Biotechnology Letters, 2020, 42 : 945 - 956