The undirected annihilating-ideal graphs over non-commutative rings

被引:0
作者
Shen, Shouqiang [1 ]
Liu, Weijun [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Guangdong Univ Sci & Technol, Coll Gen Educ, Dongguan 523083, Guangdong, Peoples R China
关键词
Non-commutative ring; Duo ring; Annihilating-ideal; Graph; ZERO-DIVISOR GRAPH; COMMUTATIVE RINGS; DUO;
D O I
10.1007/s11587-024-00886-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a ring R (not necessarily commutative) with identity, let A(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}(R)$$\end{document} be the set of all annihilating-ideals of R. We define an undirected annihilating-ideal graph AG(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}\mathcal{G}(R)$$\end{document} of R with the vertex set A(R)& lowast;=A(R)\{(0)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}(R)<^>{*}=\mathcal {A}(R)\backslash \{(0)\}$$\end{document}, and two distinct vertices I and J are adjacent if and only if either IJ=(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$IJ=(0)$$\end{document} or JI=(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$JI=(0)$$\end{document}. In this paper, we investigate the connectedness, diameter and girth of this graph. We prove that if R is a duo ring such that A(R)& lowast;not equal & empty;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}(R)<^>{*}\ne \emptyset $$\end{document}, then AG(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}\mathcal{G}(R)$$\end{document} has n vertices if and only if R has only n nonzero proper ideals. In addition, we also characterize those rings R for which AG(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}\mathcal{G}(R)$$\end{document} is a star graph, complete graph or complete bipartite graph.
引用
收藏
页数:12
相关论文
共 28 条
  • [1] The Classification of the Annihilating-Ideal Graphs of Commutative Rings
    Aalipour, G.
    Akbar, S.
    Behboodi, M.
    Nikandish, R.
    Nikmehr, M. J.
    Shaveisi, F.
    [J]. ALGEBRA COLLOQUIUM, 2014, 21 (02) : 249 - 256
  • [2] On the coloring of the annihilating-ideal graph of a commutative ring
    Aalipour, G.
    Akbari, S.
    Nikandish, R.
    Nikmehr, M. J.
    Shaveisi, F.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (17) : 2620 - 2626
  • [3] Ahrari M., 2015, J. Linear Topol. Algebra, V4, P209
  • [4] Zero-divisor graphs of non-commutative rings
    Akbari, S
    Mohammadian, A
    [J]. JOURNAL OF ALGEBRA, 2006, 296 (02) : 462 - 479
  • [5] On the zero-divisor graph of a commutative ring
    Akbari, S
    Mohammadian, A
    [J]. JOURNAL OF ALGEBRA, 2004, 274 (02) : 847 - 855
  • [6] THE ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO AN IDEAL
    Aliniaeifard, F.
    Behboodi, M.
    Mehdi-Nezhad, E.
    Rahimi, A. M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (05) : 2269 - 2284
  • [7] COMMUTATIVE RINGS WHOSE ZERO-DIVISOR GRAPHS HAVE POSITIVE GENUS
    Aliniaeifard, F.
    Behboodi, M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3629 - 3634
  • [8] The zero-divisor graph of a commutative ring
    Anderson, DF
    Livingston, PS
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (02) : 434 - 447
  • [9] TOPOLOGICAL REPRESENTATION OF ALGEBRAS
    ARENS, RF
    KAPLANSKY, I
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (MAY) : 457 - 481
  • [10] COLORING OF COMMUTATIVE RINGS
    BECK, I
    [J]. JOURNAL OF ALGEBRA, 1988, 116 (01) : 208 - 226