High-Efficiency Photooxidation of Methane to the C1 Product

被引:0
|
作者
Sun, Yingxue [1 ,2 ]
Liu, Shuai [1 ,3 ]
Chang, Huaiqiu [1 ]
Liu, Jianjun [2 ]
Piao, Lingyu [1 ,4 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[3] Ocean Univ China, Coll Chem & Chem Engn, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Shandong, Peoples R China
[4] Chinese Acad Sci, Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100190, Peoples R China
关键词
photocatalytic oxidation; methane; methanol; formaldehyde; titanium oxide; no oxidant; EXCESS AMOUNT; OXIDATION; CONVERSION; CATALYSTS; SITES; ALLOY;
D O I
10.1021/acsami.4c19876
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The efficient conversion of methane (CH4) to high-value-added chemicals using a photocatalyst at room temperature and pressure faces great challenges compared to harsh reaction conditions. However, achieving this efficient conversion would yield substantial cost advantages and hold immense potential for development. Here, we demonstrate the enhanced photocatalytic conversion efficiency of CH4 at room temperature and pressure conditions without requiring any oxidant through the construction of a bimetal Ag-Cu-loaded brookite TiO2 photocatalyst. The C1 products were ultimately obtained with 100% selectivity and a yield of 936 mu mol<middle dot>g-1<middle dot>h-1. The performance exceeds that of similar research by tens of times. The high selectivity of this system is attributed to the optimal number of <middle dot>OH, which strikes a balance between excess and deficiency. Ag effectively enhances electron transport in the photocatalytic reaction process on a dual active site photocatalyst, while Cu significantly improves the selectivity of the C1 products. In this system, the hydroxyl radical (<middle dot>OH) activates CH4 to generate the methyl radical (<middle dot>CH3), which then binds with the lattice oxygen of TiO2, breaking the Ti-O bond and resulting in the formation of *OCH3. The *OCH3 undergoes further conversion to CH3OH, which is subsequently oxidized to HCHO by <middle dot>OH. This work presents a cost-effective and highly efficient approach for directly oxidizing CH4 into valuable chemicals, ensuring superior selectivity.
引用
收藏
页码:15347 / 15356
页数:10
相关论文
共 50 条
  • [21] High-efficiency quantum steganography based on the tensor product of Bell states
    ShuJiang Xu
    XiuBo Chen
    XinXin Niu
    YiXian Yang
    Science China Physics, Mechanics and Astronomy, 2013, 56 : 1745 - 1754
  • [22] High-efficiency quantum steganography based on the tensor product of Bell states
    Xu ShuJiang
    Chen XiuBo
    Niu XinXin
    Yang YiXian
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (09) : 1745 - 1754
  • [23] High-efficiency HVd.c. generating stations
    Villablanca, M
    Rojas, J
    Urrea, C
    ELECTRIC POWER SYSTEMS RESEARCH, 2001, 59 (02) : 75 - 81
  • [24] A compact and high-efficiency electrified reactor for hydrogen production by methane steam reforming
    Ma, Jing
    Jiang, Bo
    Gao, Yuming
    Yu, Kewei
    Lv, Zheng
    Si-ma, Wang
    Yuan, Dazhong
    Tang, Dawei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (98) : 41421 - 41431
  • [25] High-efficiency methane capture by living fungi and dried fungal hyphae (necromass)
    Liew, Feng Jin
    Schilling, Jonathan S.
    JOURNAL OF ENVIRONMENTAL QUALITY, 2020, 49 (06) : 1467 - 1476
  • [26] NiO/ZnO heterojunction nanorod catalyst for high-efficiency electrochemical conversion of methane
    Kim, Cheolho
    Min, Heewon
    Kim, Junmin
    Sul, Jiwon
    Yang, Jiwoo
    Moon, Jun Hyuk
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 323
  • [27] Stable kilohertz spark discharges for high-efficiency conversion of methane to hydrogen and acetylene
    Li, Xiao-Song
    Lin, Can-Kun
    Shi, Chuan
    Xu, Yong
    Wang, You-Nian
    Zhu, Ai-Min
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (17)
  • [28] Pyrazine-based supramolecular photosensitizing assemblies as type I photosensitizers for high-efficiency photooxidation reactions
    Shi, Xiao-Han
    Dong, Rui-Zhi
    Niu, Kai-Kai
    Liu, Hui
    Yu, Shengsheng
    Xing, Ling-Bao
    MATERIALS TODAY CHEMISTRY, 2024, 40
  • [29] Prekallikrein Cleavage Of High Molecular Weight Kininogen Is Inhibited By C1 Inhibitor (C1 INH)
    Joseph, K.
    Tholanikunnel, B. G.
    Kaplan, A. P.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2009, 123 (03) : 727 - 727
  • [30] Amplitude analyses of the decays χc1 → ηπ+π- and χc1 → η′π+π-
    Adams, G. S.
    Napolitano, J.
    Ecklund, K. M.
    Insler, J.
    Muramatsu, H.
    Park, C. S.
    Pearson, L. J.
    Thorndike, E. H.
    Ricciardi, S.
    Thomas, C.
    Artuso, M.
    Blusk, S.
    Mountain, R.
    Skwarnicki, T.
    Stone, S.
    Zhang, L. M.
    Bonvicini, G.
    Cinabro, D.
    Lincoln, A.
    Smith, M. J.
    Zhou, P.
    Zhu, J.
    Naik, P.
    Rademacker, J.
    Asner, D. M.
    Edwards, K. W.
    Randrianarivony, K.
    Tatishvili, G.
    Briere, R. A.
    Vogel, H.
    Onyisi, P. U. E.
    Rosner, J. L.
    Alexander, J. P.
    Cassel, D. G.
    Das, S.
    Ehrlich, R.
    Gibbons, L.
    Gray, S. W.
    Hartill, D. L.
    Heltsley, B. K.
    Kreinick, D. L.
    Kuznetsov, V. E.
    Patterson, J. R.
    Peterson, D.
    Riley, D.
    Ryd, A.
    Sadoff, A. J.
    Shi, X.
    Sun, W. M.
    Yelton, J.
    PHYSICAL REVIEW D, 2011, 84 (11):