mmPrivPose3D: A dataset for pose estimation and gesture command recognition in human-robot collaboration using frequency modulated continuous wave 60Hhz RaDAR

被引:0
作者
Roshandel, Nima [1 ,2 ,5 ]
Scholz, Constantin [1 ,2 ]
Cao, Hoang-Long [1 ,3 ]
Amighi, Milan [1 ,2 ]
Firouzipouyaei, Hamed [1 ,2 ]
Burkiewicz, Aleksander [1 ,2 ]
Menet, Sebastien [1 ,2 ]
Ballen-Moreno, Felipe [1 ,3 ]
Sisavath, Dylan Warawout [1 ,2 ]
Imrith, Emil [1 ]
Paolillo, Antonio [1 ,6 ]
Genoe, Jan [4 ,5 ]
Vanderborght, Bram [1 ,5 ]
机构
[1] Vrije Univ Brussel, Brubot, Brussels, Belgium
[2] VUB, Imec, IMS, Ixelles, Belgium
[3] Flanders Make, Brussels, Belgium
[4] Imec, SAT, Leuven, Belgium
[5] Katholieke Univ Leuven, Leuven, Belgium
[6] Vrije Univ Brussel, SOFT Languages Lab, Brussels, Belgium
来源
DATA IN BRIEF | 2025年 / 59卷
关键词
Human-robot collaboration; IWR6843AOPEVM; RaDAR; Pose estimation; Gesture command recognition;
D O I
10.1016/j.dib.2025.111316
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
3D pose estimation and gesture command recognition are crucial for ensuring safety and improving human-robot interaction. While RGB-D cameras are commonly used for these tasks, they often raise privacy concerns due to their ability to capture detailed visual data of human operators. In contrast, using RaDAR sensors offers a privacy-preserving alternative, as they can output point-cloud data rather than images. We introduce mmPrivPose3D, a dataset of 3D RaDAR point-cloud data that captures human movements and gestures using a single IWR6843AOPEVM RaDAR sensor with a frequency of 10 Hz synchronized with 19 corresponding 3D skeleton keypoints as the ground truth. These keypoints were extracted from RGB-D images captured by an Intel RealSense camera recorded at 30 frames per second using the Nuitrack SDK, and labeled with gestures. The dataset was collected from n = 15 participants. Our dataset serves as a fundamental resource for developing machine learning algorithms to improve the accuracy of pose estimation and gesture recognition using RaDAR data. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)
引用
收藏
页数:8
相关论文
共 14 条
  • [1] MARS: mm Wave-based Assistive Rehabilitation System for Smart Healthcare
    An, Sizhe
    Ogras, Umit Y.
    [J]. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2021, 20 (05)
  • [2] HuPR: A Benchmark for Human Pose Estimation Using Millimeter Wave Radar
    Lee, Shih-Po
    Kini, Niraj Prakash
    Peng, Wen-Hsiao
    Ma, Ching-Wen
    Hwang, Jenq-Neng
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5704 - 5713
  • [3] Infrared and Visible Image Fusion Technology and Application: A Review
    Ma, Weihong
    Wang, Kun
    Li, Jiawei
    Yang, Simon X.
    Li, Junfei
    Song, Lepeng
    Li, Qifeng
    [J]. SENSORS, 2023, 23 (02)
  • [4] Human-Robot Collaboration in Manufacturing Applications: A Review
    Matheson, Eloise
    Minto, Riccardo
    Zampieri, Emanuele G. G.
    Faccio, Maurizio
    Rosati, Giulio
    [J]. ROBOTICS, 2019, 8 (04)
  • [5] Efficient 3D human pose estimation from RGBD sensors
    Pascual-Hernandez, David
    de Frutos, Nuria Oyaga
    Mora-Jimenez, Inmaculada
    Canas-Plaza, Jose Maria
    [J]. DISPLAYS, 2022, 74
  • [6] Sensor-Enabled Safety Systems for Human-Robot Collaboration: A Review
    Scholz, Constantin
    Cao, Hoang-Long
    Imrith, Emil
    Roshandel, Nima
    Firouzipouyaei, Hamed
    Burkiewicz, Aleksander
    Amighi, Milan
    Menet, Sebastien
    Sisavath, Dylan Warawout
    Paolillo, Antonio
    Rottenberg, Xavier
    Gerets, Peter
    Cheyns, David
    Dahlem, Marcus
    Ocket, Ilja
    Genoe, Jan
    Philips, Kathleen
    Stoffelen, Ben
    van den Bosch, Jeroen
    Latre, Steven
    Vanderborght, Bram
    [J]. IEEE SENSORS JOURNAL, 2025, 25 (01) : 65 - 88
  • [7] Improving robot-to-human communication using flexible display technology as a robotic-skin-interface: a co-design study
    Scholz, Constantin
    Cao, Hoang-Long
    El Makrini, Ilias
    Niehaus, Susanne
    Kaufmann, Maximilian
    Cheyns, David
    Roshandel, Nima
    Burkiewicz, Aleksander
    Shhaitly, Mariane
    Imrith, Emil
    Genoe, Jan
    Rottenberg, Xavier
    Gerets, Peter
    Vanderborght, Bram
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2024, : 146 - 163
  • [8] mmPose-NLP: A Natural Language Processing Approach to Precise Skeletal Pose Estimation Using mmWave Radars
    Sengupta, Arindam
    Cao, Siyang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8418 - 8429
  • [9] mm-Pose: Real-Time Human Skeletal Posture Estimation Using mmWave Radars and CNNs
    Sengupta, Arindam
    Jin, Feng
    Zhang, Renyuan
    Cao, Siyang
    [J]. IEEE SENSORS JOURNAL, 2020, 20 (17) : 10032 - 10044
  • [10] Shi Cong, 2022, Smart Health, DOI 10.1016/j.smhl.2021.100228