Tunable Quantum Anomalous Hall Effect via Crystal Order in Spin-Splitting Antiferromagnets

被引:0
作者
Zhu, Wenxuan [1 ]
Bai, Hua [1 ]
Han, Lei [1 ]
Pan, Feng [1 ]
Song, Cheng [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum anomalous Hall effect; spin-splitting antiferromagnets; MnBi2Te4; tunable Chern number; crystal design; TOTAL-ENERGY CALCULATIONS; CHERN INSULATOR; STATE; MAGNETISM;
D O I
10.1021/acs.nanolett.4c06419
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantum anomalous Hall (QAH) effect provides dissipationless channels for spin transport, which is highly expected for low-power quantum computation. Spin-splitting bands are vital for the QAH effect in topological systems, with ferromagnetism indispensable to manipulate the Chern number. Crystal-order-dependent QAH effects in spin-splitting antiferromagnets are proposed here. Since the spin splitting of these antiferromagnets originates from the alternate crystal environment, the Chern number can be modulated by the crystal order, opening an additional dimension for tuning the QAH effect. Our concept is illustrated by two-dimensional (2D) MnBi2Te4 (MBT) with even septuple layers, typical axion insulators with fully magnetic compensation. By interlayer rotation and translation operations, sublattices of MBT with opposite magnetizations are no longer connected by inversion or mirror symmetries, leading to the transition to QAH insulators. Flexible stacking of 2D materials enables a reversible Chern number by crystal design. Our findings would advance QAH effect-based devices toward high controllability, integration density, and operation speed.
引用
收藏
页码:5672 / 5678
页数:7
相关论文
共 54 条
  • [1] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [2] Ferroically Ordered Magnetic Octupoles in d-Wave Altermagnets
    Bhowal, Sayantika
    Spaldin, Nicola A.
    [J]. PHYSICAL REVIEW X, 2024, 14 (01)
  • [3] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [4] Opportunities in topological insulator devices
    Breunig, Oliver
    Ando, Yoichi
    [J]. NATURE REVIEWS PHYSICS, 2022, 4 (03) : 184 - 193
  • [5] Switchable Anomalous Hall Effects in Polar-Stacked 2D Antiferromagnet MnBi2Te4
    Cao, Tengfei
    Shao, Ding-Fu
    Huang, Kai
    Gurung, Gautam
    Tsymbal, Evgeny Y.
    [J]. NANO LETTERS, 2023, 23 (09) : 3781 - 3787
  • [6] Chang CZ, 2023, REV MOD PHYS, V95, DOI [10.1103/RevModPhys.95.011002, 10.1103/RevModPhys.96.011002]
  • [7] Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State
    Chang, Cui-Zu
    Zhao, Weiwei
    Kim, Duk Y.
    Wei, Peng
    Jain, J. K.
    Liu, Chaoxing
    Chan, Moses H. W.
    Moodera, Jagadeesh S.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (05)
  • [8] Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/NMAT4204, 10.1038/nmat4204]
  • [9] Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
    Chang, Cui-Zu
    Zhang, Jinsong
    Feng, Xiao
    Shen, Jie
    Zhang, Zuocheng
    Guo, Minghua
    Li, Kang
    Ou, Yunbo
    Wei, Pang
    Wang, Li-Li
    Ji, Zhong-Qing
    Feng, Yang
    Ji, Shuaihua
    Chen, Xi
    Jia, Jinfeng
    Dai, Xi
    Fang, Zhong
    Zhang, Shou-Cheng
    He, Ke
    Wang, Yayu
    Lu, Li
    Ma, Xu-Cun
    Xue, Qi-Kun
    [J]. SCIENCE, 2013, 340 (6129) : 167 - 170
  • [10] Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/nphys3053, 10.1038/NPHYS3053]