A review of physics-informed machine learning for building energy modeling

被引:0
|
作者
Ma, Zhihao [1 ]
Jiang, Gang [1 ]
Hu, Yuqing [2 ]
Chen, Jianli [3 ]
机构
[1] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84102 USA
[2] Penn State Univ, Dept Architectural Engn, University Pk, PA 16802 USA
[3] Tongji Univ, Coll Civil Engn, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
Physics-informed machine learning; Building energy modeling; Physics-constraint learning; Physics-embedded algorithm structure; NEURAL-NETWORKS; SIMULATION; CONSUMPTION; FRAMEWORK; GENERATION; PREDICTION; IMPACT; OPTIMIZATION; PERFORMANCE; EFFICIENT;
D O I
10.1016/j.apenergy.2024.125169
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Building energy modeling (BEM) refers to computational modeling of building energy use and indoor dynamics. As a critical component in sustainable and resilient building development, BEM is fundamental to support a diverse spectrum of applications, including but not limited to sustainable building design and retrofitting, building resilience analysis, smart building control. Currently, two main approaches, i.e., physics-based and datadriven modeling, exist within BEM. Despite significant advancements of machine learning (ML) and deep learning (DL) algorithms in recent years, several challenges remain to apply these data-driven approaches in BEM, including the necessity of obtaining sufficient and high-quality training data in algorithm development, unreliable and physically infeasible predictions, and limited algorithm interpretability and generality in applications. These contribute to distrust and impede the widespread adoption of these algorithms in BEM practices. To overcome these challenges, this work provides a comprehensive overview of Physics-Informed Machine Learning (PIML), a novel modeling approach that encodes physics principles and useful physical information into cutting-edge ML algorithms. This approach is designed for advanced building energy modeling with enhanced robustness and interpretability. Specifically, existing PIML methods for BEM are summarized and categorized into different paradigms to integrate physics into ML models, including physics-informed inputs, physicsinformed loss functions, physics-informed architectural design, and physics-informed ensemble models. The challenges, including the effective integration of prior physical knowledge in modeling and the evaluation of developed PIML methods, in the development of PIML for BEM are then discussed. This review outlines extensive existing research works and future potential research directions to shed light on the broader application of PIML to support BEM practice.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Physics-informed machine learning for modeling multidimensional dynamics
    Abbasi, Amirhassan
    Kambali, Prashant N.
    Shahidi, Parham
    Nataraj, C.
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21565 - 21585
  • [2] Physics-Informed Machine Learning for DRAM Error Modeling
    Baseman, Elisabeth
    DeBardeleben, Nathan
    Blanchard, Sean
    Moore, Juston
    Tkachenko, Olena
    Ferreira, Kurt
    Siddiqua, Taniya
    Sridharan, Vilas
    2018 IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT), 2018,
  • [3] Physics-informed Machine Learning for Modeling Turbulence in Supernovae
    Karpov, Platon I.
    Huang, Chengkun
    Sitdikov, Iskandar
    Fryer, Chris L.
    Woosley, Stan
    Pilania, Ghanshyam
    ASTROPHYSICAL JOURNAL, 2022, 940 (01):
  • [4] Physics-informed ensemble learning with residual modeling for enhanced building energy prediction
    Ma, Zhihao
    Jiang, Gang
    Chen, Jianli
    ENERGY AND BUILDINGS, 2024, 323
  • [5] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [6] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [7] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [8] A critical review of physics-informed machine learning applications in subsurface energy systems
    Latrach, Abdeldjalil
    Malki, Mohamed L.
    Morales, Misael
    Mehana, Mohamed
    Rabiei, Minou
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 239
  • [9] Wind Farm Modeling with Interpretable Physics-Informed Machine Learning
    Howland, Michael F.
    Dabiri, John O.
    ENERGIES, 2019, 12 (14)
  • [10] Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
    Nghiem, Truong X.
    Drgona, Jan
    Jones, Colin
    Nagy, Zoltan
    Schwan, Roland
    Dey, Biswadip
    Chakrabarty, Ankush
    Di Cairano, Stefano
    Paulson, Joel A.
    Carron, Andrea
    Zeilinger, Melanie N.
    Cortez, Wenceslao Shaw
    Vrabie, Draguna L.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3735 - 3750