DIAMETER VS. LAPLACIAN EIGENVALUE DISTRIBUTION

被引:0
作者
Xu, Leyou [1 ]
Zhou, Bo [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Diameter; Laplacian spectrum; Permutational similar; SPECTRUM; NUMBER; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph of order n. It is known that any Laplacian eigenvalue of G belongs to the interval [0, n]. For an interval I subset of [0, n], denote by m(G)I the number of Laplacian eigenvalues of G in I, counted with multiplicities. Let d be the diameter of G. If 2 <= d <= n-4, we show that m(G)[n-d, n] <= n-d+ 2, and it may be improved into m(G)[n-d, n] <= n-d+ 1 when d = 2, 3, 4. We also show that m(G)[n - 2d + 4, n] <= n - 2 if d = 2, [n+3/2], and m(G)[n - 2d + 4, n] <= n - 3 if 3 <= d <= [n+1/2]. The diameter constraint provides an insightful approach to understand how the Laplacian eigenvalues are distributed.
引用
收藏
页码:774 / 787
页数:14
相关论文
共 28 条
[1]   Laplacian eigenvalue distribution and graph parameters [J].
Ahanjideh, M. ;
Akbari, S. ;
Fakharan, M. H. ;
Trevisan, V. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 632 :1-14
[2]  
[Anonymous], 1991, Graph theory, Combinatorics, and Applications
[3]  
[Anonymous], 1985, Linear and Multilinear Algebra
[4]   On the distribution of Laplacian eigenvalues of trees [J].
Braga, Rodrigo O. ;
Rodrigues, Virginia M. ;
Trevisan, Vilmar .
DISCRETE MATHEMATICS, 2013, 313 (21) :2382-2389
[5]   Laplacian Distribution and Domination [J].
Cardoso, Domingos M. ;
Jacobs, David P. ;
Trevisan, Vilmar .
GRAPHS AND COMBINATORICS, 2017, 33 (05) :1283-1295
[6]   Laplacian eigenvalue distribution of a graph with given independence number [J].
Choi, Jinwon ;
Suil, O. ;
Park, Jooyeon ;
Wang, Zhiwen .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 448
[7]   Classification of graphs by Laplacian eigenvalue distribution and independence number [J].
Choi, Jinwon ;
Moon, Sunyo ;
Park, Seungkook .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18) :2877-2893
[8]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[9]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[10]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229