Multiscale Feature Knowledge Distillation and Implicit Object Discovery for Few-Shot Object Detection in Remote Sensing Images

被引:0
|
作者
Chen, Jie [1 ]
Guo, Ya [1 ]
Qin, Dengda [1 ]
Zhu, Jingru [1 ]
Gou, Zhenbo [1 ]
Sun, Geng [1 ]
机构
[1] Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Object detection; Training; Proposals; Accuracy; Measurement; Power capacitors; Marine vehicles; Load modeling; Few-shot learning; knowledge distillation; object detection; pseudolabel; CLASSIFICATION;
D O I
10.1109/TGRS.2024.3520715
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Dynamic or sudden changes in various scenes may give rise to new objects. These new objects with limited annotated samples are susceptible to overfitting in deep learning. While few-shot object detection (FSOD) is effective with limited samples, current FSOD methods for remote sensing images still face specific challenges. The "pretraining-transfer" paradigm tends to forget the feature representations of base classes, impacting the learning process for novel classes during few-shot training. Furthermore, the presence of implicit objects in sparsely labeled instances of remote sensing images introduces erroneous supervisory information. To address these challenges, we propose an FSOD method that incorporates multiscale feature knowledge distillation and implicit object discovery, named MFKDIOD, which preserves the performance of base classes and mitigates the impact of implicit objects. Specifically, we first design a multiscale feature knowledge distillation (MFKD) module, which transfers the knowledge of base classes from a teacher network to a student network, enabling the student network to better retain the base class feature representations. Second, we design an implicit object discovery (IOD) module that utilizes both the teacher and student networks to discover implicit objects within the few-shot training data and generate pseudolabels. The code will be available at https://github.com/RS-CSU/MFKDIOD.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Few-Shot Object Detection in Remote Sensing: Mitigating Label Inconsistencies and Navigating Category Variations
    Si, Tiancheng
    Kong, Shenyu
    IEEE ACCESS, 2025, 13 : 8169 - 8186
  • [32] GFENet: Generalization Feature Extraction Network for Few-Shot Object Detection
    Ke, Xiao
    Chen, Qiuqin
    Liu, Hao
    Guo, Wenzhong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 12741 - 12755
  • [33] Temporal Speciation Network for Few-Shot Object Detection
    Zhao, Xiaowei
    Liu, Xianglong
    Ma, Yuqing
    Bai, Shihao
    Shen, Yifan
    Hao, Zeyu
    Liu, Aishan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8267 - 8278
  • [34] Enhanced few-shot object detection for remote sensing images based on target characteristics
    Wang, Jian
    Zhao, Zeya
    Shao, Jiang
    Zou, Xiaochun
    Zhao, Xinbo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [35] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [36] Efficient Feature Enhancement for Few-Shot Object Detection
    Li, Lin
    Lei, Zhou
    Chen, Shengbo
    Xu, Qingguo
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1206 - 1210
  • [37] Few-Shot Object Detection via Knowledge Transfer
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3564 - 3569
  • [38] Few-Shot Object Detection via Sample Processing
    Xu, Honghui
    Wang, Xinqing
    Shao, Faming
    Duan, Baoguo
    Zhang, Peng
    IEEE ACCESS, 2021, 9 (09): : 29207 - 29221
  • [39] Proposal Distribution Calibration for Few-Shot Object Detection
    Li, Bohao
    Liu, Chang
    Shi, Mengnan
    Chen, Xiaozhong
    Ji, Xiangyang
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1911 - 1918
  • [40] Few-Shot Object Detection Based on Contrastive Class-Attention Feature Reweighting for Remote Sensing Images
    Miao, Wang
    Zhao, Zihao
    Geng, Jie
    Jiang, Wen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2800 - 2814