Graph Out-of-Distribution Generalization With Controllable Data Augmentation

被引:0
|
作者
Lu, Bin [1 ]
Zhao, Ze [1 ]
Gan, Xiaoying [1 ]
Liang, Shiyu [2 ]
Fu, Luoyi [3 ]
Wang, Xinbing [1 ]
Zhou, Chenghu [4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, John Hopcroft Ctr Comp Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100045, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Out-of-distribution generalization; graph neural network; domain generalization; data augmentation;
D O I
10.1109/TKDE.2024.3393109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties. However, due to the selection bias of training and testing data (e.g., training on small graphs and testing on large graphs, or training on dense graphs and testing on sparse graphs), distribution deviation is widespread. More importantly, we often observe hybrid structure distribution shift of both scale and density, despite of one-sided biased data partition. The spurious correlations over hybrid distribution deviation degrade the performance of previous GNN methods and show large instability among different datasets. To alleviate this problem, we propose OOD-GMixup to jointly manipulate the training distribution with controllable data augmentation in metric space. Specifically, we first extract the graph rationales to eliminate the spurious correlations due to irrelevant information. Second, we generate virtual samples with perturbation on graph rationale representation domain to obtain potential OOD training samples. Finally, we propose OOD calibration to measure the distribution deviation of virtual samples by leveraging Extreme Value Theory, and further actively control the training distribution by emphasizing the impact of virtual OOD samples. Extensive studies on several real-world datasets on graph classification demonstrate the superiority of our proposed method over state-of-the-art baselines.
引用
收藏
页码:6317 / 6329
页数:13
相关论文
共 50 条
  • [41] Verifying the Generalization of Deep Learning to Out-of-Distribution Domains
    Amir, Guy
    Maayan, Osher
    Zelazny, Tom
    Katz, Guy
    Schapira, Michael
    JOURNAL OF AUTOMATED REASONING, 2024, 68 (03)
  • [42] Tackling Domain Generalization for Out-of-Distribution Endoscopic Imaging
    Ali Teevno, Mansoor
    Ochoa-Ruiz, Gilberto
    Ali, Sharib
    MACHINE LEARNING IN MEDICAL IMAGING, PT II, MLMI 2024, 2025, 15242 : 43 - 52
  • [43] Probing out-of-distribution generalization in machine learning for materials
    Li, Kangming
    Rubungo, Andre Niyongabo
    Lei, Xiangyun
    Persaud, Daniel
    Choudhary, Kamal
    Decost, Brian
    Dieng, Adji Bousso
    Hattrick-Simpers, Jason
    COMMUNICATIONS MATERIALS, 2025, 6 (01)
  • [44] RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction
    Yu, Yemin
    Yuan, Luotian
    Wei, Ying
    Gao, Hanyu
    Wu, Fei
    Wang, Zhihua
    Ye, Xinhai
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 374 - 382
  • [45] Deep Relevant Feature Focusing for Out-of-Distribution Generalization
    Wang, Fawu
    Zhang, Kang
    Liu, Zhengyu
    Yuan, Xia
    Zhao, Chunxia
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 245 - 253
  • [46] Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
    Zhang, Dinghuai
    Ahuja, Kartik
    Xu, Yilun
    Wang, Yisen
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [47] Understanding and Improving Feature Learning for Out-of-Distribution Generalization
    Chen, Yongqiang
    Huang, Wei
    Zhou, Kaiwen
    Bian, Yatao
    Han, Bo
    Cheng, James
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [48] Face Reconstruction Transfer Attack as Out-of-Distribution Generalization
    June, Yoon Gyo
    Park, Jaewoo
    Dong, Xingbo
    Park, Hojin
    Teoh, Andrew Beng Jin
    Camps, Octavia
    COMPUTER VISION - ECCV 2024, PT LXXV, 2025, 15133 : 396 - 413
  • [49] Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
    Rame, Alexandre
    Dancette, Corentin
    Cord, Matthieu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [50] Improving Out-of-Distribution Robustness via Selective Augmentation
    Yao, Huaxiu
    Wang, Yu
    Li, Sai
    Zhang, Linjun
    Liang, Weixin
    Zou, James
    Finn, Chelsea
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,